Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7537, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824377

ABSTRACT

The mineral composition of bovine milk plays an important role in determining its nutritional and cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra produced during milk recording, combined with cow genotypes, provide a unique opportunity to decipher the genetic determinism of these traits. The present study included 1 million test-day predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 had genotype data available. All investigated traits were highly heritable (0.50-0.58), with the exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL (18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, encoding proteins involved in ion transport were located in the most significant QTL. This study therefore highlights a comprehensive set of functional candidate genes and variants that affect milk mineral content.


Subject(s)
Lactation/genetics , Milk/chemistry , Animals , Cattle/genetics , Female , Genetic Variation/genetics , Genome-Wide Association Study/methods , Genotype , Lactation/metabolism , Lactation/physiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Minerals/metabolism , Phenotype , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
2.
J Dairy Sci ; 102(11): 10073-10087, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31447148

ABSTRACT

Genomic evaluation of cows and the use of sexed semen have recently provided opportunities for commercial dairy farmers to accelerate genetic progress at the herd level by increasing both selection accuracy and selection intensity. Because implementing genomic tests or using sexed semen generate extra costs, a higher investment capacity of the farm is required. In this study, we compared the effect of female genotyping alone or combined with the use of sexed semen on genetic and economic performance of the herds. Three typical Montbéliarde herds with different farming systems were considered: a 77-cow herd producing milk at a high price sold to make cheese with a protected designation of origin, a 60-cow herd producing organic milk at a medium price sold for dairy, and a 120-cow herd producing standard milk at a lower price sold for dairy. Eight alternative scenarios were simulated over a 10-yr period for each herd, with combinations of the following: use (or not) of dairy sexed semen, use (or not) of beef breed semen, use (or not) of female genotyping at 15 d of age. A mechanistic, stochastic, and dynamic model was used to mimic the farmer's daily decisions and the individual cow's biology. Heifers (80%) and first-lactation cows (30%) that ranked highest on the French total merit index (France's national dairy index) were inseminated with sexed semen to ensure replacement and to maximize genetic gain, when sexed semen was used. During the 10 yr of simulation, scenarios that included sexed semen (whether female genotyping was used or not) gained, on average, one extra year of overall genetic gain over scenarios that did not include sexed semen. During the same period, scenarios that used female genotyping (whether sexed semen was used or not) gained, on average, 5 mo of overall genetic gain over scenarios using parent average only. The highest gains in net margin were always obtained when combining use of sexed semen with terminal crossbreeding. Maximum genotyping prices under which routine female genotyping is economically valuable (breakeven prices of genotyping) were under €37. Maximum genotyping prices, such that the female genotyping costs are refunded within 10 yr of investment (investor genotyping price), were under €26. However, they would be higher over a longer period of use because genetic gain is cumulative. Because genotyping price is expected to decrease in the future, female genotyping will be worthwhile if combined with the use of sexed semen and beef breed semen.


Subject(s)
Animal Husbandry/economics , Cattle/physiology , Cheese/economics , Dairying/economics , Milk/economics , Animals , Breeding/economics , Breeding/methods , Cattle/genetics , Cattle/growth & development , Costs and Cost Analysis , Decision Making , Farmers , Farms , Female , France , Genotype , Genotyping Techniques/economics , Genotyping Techniques/veterinary , Insemination, Artificial/veterinary , Lactation , Milk/metabolism , Semen/physiology , Sex Preselection/veterinary
3.
Genet Sel Evol ; 51(1): 34, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31262251

ABSTRACT

BACKGROUND: Milk quality in dairy cattle is routinely assessed via analysis of mid-infrared (MIR) spectra; this approach can also be used to predict the milk's cheese-making properties (CMP) and composition. When this method of high-throughput phenotyping is combined with efficient imputations of whole-genome sequence data from cows' genotyping data, it provides a unique and powerful framework with which to carry out genomic analyses. The goal of this study was to use this approach to identify genes and gene networks associated with milk CMP and composition in the Montbéliarde breed. RESULTS: Milk cheese yields, coagulation traits, milk pH and contents of proteins, fatty acids, minerals, citrate, and lactose were predicted from MIR spectra. Thirty-six phenotypes from primiparous Montbéliarde cows (1,442,371 test-day records from 189,817 cows) were adjusted for non-genetic effects and averaged per cow. 50 K genotypes, which were available for a subset of 19,586 cows, were imputed at the sequence level using Run6 of the 1000 Bull Genomes Project (comprising 2333 animals). The individual effects of 8.5 million variants were evaluated in a genome-wide association study (GWAS) which led to the detection of 59 QTL regions, most of which had highly significant effects on CMP and milk composition. The results of the GWAS were further subjected to an association weight matrix and the partial correlation and information theory approach and we identified a set of 736 co-associated genes. Among these, the well-known caseins, PAEP and DGAT1, together with dozens of other genes such as SLC37A1, ALPL, MGST1, SEL1L3, GPT, BRI3BP, SCD, GPAT4, FASN, and ANKH, explained from 12 to 30% of the phenotypic variance of CMP traits. We were further able to identify metabolic pathways (e.g., phosphate and phospholipid metabolism and inorganic anion transport) and key regulator genes, such as PPARA, ASXL3, and bta-mir-200c that are functionally linked to milk composition. CONCLUSIONS: By using an approach that integrated GWAS with network and pathway analyses at the whole-genome sequence level, we propose candidate variants that explain a substantial proportion of the phenotypic variance of CMP traits and could thus be included in genomic evaluation models to improve milk CMP in Montbéliarde cows.


Subject(s)
Cattle/genetics , Cheese , Genome-Wide Association Study/veterinary , Milk/chemistry , Animals , Computer Simulation , Datasets as Topic , Female , Gene Expression Regulation , Gene Regulatory Networks , Male , Quantitative Trait Loci , Whole Genome Sequencing/veterinary
4.
Genet Sel Evol ; 49(1): 68, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28923017

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) were performed at the sequence level to identify candidate mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) dairy cattle. Whey protein (α-lactalbumin and ß-lactoglobulin) and casein (αs1, αs2, ß, and κ) contents were estimated by mid-infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R2 ≤ 0.92), for 848,068 test-day milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test-day measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high-density (HD) using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting HD SNP genotypes were subsequently imputed to the sequence level using 27 million high-quality sequence variants selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within-breed, multi-breed, and conditional GWAS were performed. RESULTS: Thirty-four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very significant effects on milk composition and were shared across the three breeds. Other significant effects, which partially overlapped across breeds, were found on almost all the autosomes. Multi-breed analyses provided a larger number of significant genomic regions with smaller confidence intervals than within-breed analyses. Combinations of within-breed, multi-breed, and conditional analyses led to the identification of putative causative variants in several candidate genes that presented significant protein-protein interactions enrichment, including those with previously described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and those with effects reported for the first time here (ALPL, ANKH, PICALM). CONCLUSIONS: GWAS applied to fine-scale phenotypes, multiple breeds, and whole-genome sequences seems to be effective to identify candidate gene variants. However, although we identified functional links between some candidate genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein composition may have immediate applications for improvements in cheese-making.


Subject(s)
Breeding , Cattle/genetics , Genome-Wide Association Study , Lactation/genetics , Milk Proteins/genetics , Mutation/genetics , Animals , Female , Genetic Variation/genetics , Genome/genetics , Male , Milk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...