Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675888

ABSTRACT

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Subject(s)
Antiviral Agents , COVID-19 , Fluoxetine , SARS-CoV-2 , Sertraline , Virus Replication , SARS-CoV-2/drug effects , Sertraline/pharmacology , Fluoxetine/pharmacology , Virus Replication/drug effects , Humans , Antiviral Agents/pharmacology , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Animals , COVID-19 Drug Treatment
2.
Front Immunol ; 14: 1150667, 2023.
Article in English | MEDLINE | ID: mdl-37520539

ABSTRACT

Background: Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are increasingly observed in vaccinated individuals. Immune responses towards SARS-CoV-2 variants, particularly Omicron-BA.5, are poorly understood. We investigated the humoral and cellular immune responses of hospitalized COVID-19 patients during Delta and Omicron infection waves. Methods: The corresponding SARS-CoV-2 variant of the respective patients were identified by whole genome sequencing. Humoral immune responses were analyzed by ELISA and a cell culture-based neutralization assay against SARS-CoV-2 D614G isolate (wildtype), Alpha, Delta (AY.43) and Omicron (BA.1 and BA.5). Cellular immunity was evaluated with an IFN-γ ELISpot assay. Results: On a cellular level, patients showed a minor IFN-γ response after stimulating PBMCs with mutated regions of SARS-CoV-2 variants. Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced. Double-vaccinated patients with Delta breakthrough infection showed a significantly increased neutralizing antibody response against Delta compared to double-vaccinated uninfected controls (median complete neutralization titer (NT100) 640 versus 80, p<0.05). Omicron-BA.1 infection increased neutralization titers against BA.1 in double-vaccinated patients (median NT100 of 160 in patients versus 20 in controls, p=0.07) and patients that received booster vaccination (median NT100 of 50 in patients versus 20 in controls, p=0.68). For boosted patients with BA.5 breakthrough infection, we found no enhancing effect on humoral immunity against SARS-CoV-2 variants. Conclusion: Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced in SARS-CoV-2 breakthrough infections. Delta and Omicron-BA.1 but not Omicron-BA.5 infections boosted the humoral immunity in double-vaccinated patients and patients with booster vaccination. Despite BA.5 breakthrough infection, those patients may still be vulnerable for reinfections with BA.5 or other newly emerging variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Breakthrough Infections , Antibodies, Neutralizing , Enzyme-Linked Immunospot Assay , Immunity, Cellular
3.
Front Immunol ; 14: 1143870, 2023.
Article in English | MEDLINE | ID: mdl-37006290

ABSTRACT

Background: Herpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk. Methods: We established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations. Results: In total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies. Conclusion: This study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Retrospective Studies , Viral Envelope Proteins , Immunization, Passive , Antibodies, Blocking
4.
Front Cell Infect Microbiol ; 12: 949036, 2022.
Article in English | MEDLINE | ID: mdl-36325470

ABSTRACT

Type I interferons (IFNs) present the first line of defense against viral infections, providing antiviral, immunomodulatory and antiproliferative effects. The type I IFN family contains 12 IFNα subtypes and IFNß, and although they share the same receptor, they are classified as non-redundant, capable to induce a variety of different IFN-stimulated genes. However, the biological impact of individual subtypes remains controversial. Recent data propose a subtype-specificity of type I IFNs revealing unique effector functions for different viruses and thus expanding the implications for IFNα-based antiviral immunotherapies. Despite extensive research, drug-resistant infections with herpes simplex virus type 1 (HSV-1), which is the common agent of recurrent orogenital lesions, are still lacking a protective or curing therapeutic. However, due to the risk of generalized infections in immunocompromised hosts as well as the increasing incidence of resistance to conventional antiherpetic agents, HSV infections raise major health concerns. Based on their pleiotropic effector functions, the application of type I IFNs represents a promising approach to inhibit HSV-1 replication, to improve host immunity and to further elucidate their qualitative differences. Here, selective IFNα subtypes and IFNß were evaluated for their therapeutic potential in genital HSV-1 infections. Respective in vivo studies in mice revealed subtype-specific differences in the reduction of local viral loads. IFNß had the strongest antiviral efficacy against genital HSV-1 infection in mice, whereas IFNα1, IFNα4, and IFNα11 had no impact on viral loads. Based on flow cytometric analyses of underlying immune responses at local and peripheral sites, these differences could be further assigned to specific modulations of the antiviral immunity early during HSV-1 infection. IFNß led to enhanced systemic cytokine secretion and elevated cytotoxic responses, which negatively correlated with viral loads in the vaginal tract. These data provide further insights into the diversity of type I IFN effector functions and their impact on the immunological control of HSV-1 infections.


Subject(s)
Herpes Genitalis , Herpes Simplex , Herpesvirus 1, Human , Interferon Type I , Female , Mice , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpes Genitalis/drug therapy , Herpes Genitalis/pathology , Interferon-beta , Interferon-alpha , Genitalia/pathology , Virus Replication
5.
Nanoscale Adv ; 4(21): 4502-4516, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341304

ABSTRACT

Azide-terminated ultrasmall gold nanoparticles (2 nm gold core) were covalently functionalized with alkyne-terminated small-interfering siRNA duplexes by copper-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry). The nanoparticle core was visualized by transmission electron microscopy. The number of attached siRNA molecules per nanoparticle was determined by a combination of atomic absorption spectroscopy (AAS; for gold) and UV-Vis spectroscopy (for siRNA). Each nanoparticle carried between 6 and 10 siRNA duplex molecules which corresponds to a weight ratio of siRNA to gold of about 2.2 : 1. Different kinds of siRNA were conjugated to the nanoparticles, depending on the gene to be silenced. In general, the nanoparticles were readily taken up by cells and highly efficient in gene silencing, in contrast to free siRNA. This was demonstrated in HeLa-eGFP cells (silencing of eGFP) and in LPS-stimulated macrophages (silencing of NF-κB). Furthermore, we demonstrated that nanoparticles carrying antiviral siRNA potently inhibited the replication of Herpes simplex virus 2 (HSV-2) in vitro. This highlights the strong potential of siRNA-functionalized ultrasmall gold nanoparticles in a broad spectrum of applications, including gene silencing and treatment of viral infections, combined with a minimal dose of gold.

6.
Vaccines (Basel) ; 10(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35746580

ABSTRACT

Protecting vulnerable groups from severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is mandatory. Immune responses after a third vaccination against SARS-CoV-2 are insufficiently studied in patients after hematopoietic stem-cell transplantation (HSCT). We analyzed immune responses before and after a third vaccination in HSCT patients and healthy controls. Cellular immunity was assessed using interferon-gamma (IFN-γ) and interleukin-2 (IL-2) ELISpots. Furthermore, this is the first report on neutralizing antibodies against 11 variants of SARS-CoV-2, analyzed by competitive fluorescence assay. Humoral immunity was also measured by neutralization tests assessing cytopathic effects and by ELISA. Neither HSCT patients nor healthy controls displayed significantly higher SARS-CoV-2-specific IFN-γ or IL-2 responses after the third vaccination. However, after the third vaccination, cellular responses were 2.6-fold higher for IFN-γ and 3.2-fold higher for IL-2 in healthy subjects compared with HSCT patients. After the third vaccination, neutralizing antibodies were significantly higher (p < 0.01) in healthy controls, but not in HSCT patients. Healthy controls vs. HSCT patients had 1.5-fold higher concentrations of neutralizing antibodies against variants and 1.2-fold higher antibody concentrations against wildtype. However, half of the HSCT patients exhibited neutralizing antibodies to variants of SARS-CoV-2, which increased only slightly after a third vaccination.

7.
Viruses ; 14(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35458476

ABSTRACT

The novel, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a pandemic of acute respiratory illness worldwide and remains a huge threat to the healthcare system's capacity to respond to COVID-19. Elderly and immunocompromised patients are at increased risk for a severe course of COVID-19. These high-risk groups have been identified as developing diminished humoral and cellular immune responses. Notably, SARS-CoV-2 RNA remains detectable in nasopharyngeal swabs of these patients for a prolonged period of time. These factors complicate the clinical management of these vulnerable patient groups. To date, there are no well-defined guidelines for an appropriate duration of isolation for elderly and immunocompromised patients, especially in hospitals or nursing homes. The aim of the present study was to characterize at-risk patient cohorts capable of producing a replication-competent virus over an extended period after symptomatic COVID-19, and to investigate the humoral and cellular immune responses and infectivity to provide a better basis for future clinical management. In our cohort, the rate of positive viral cultures and the sensitivity of SARS-CoV-2 antigen tests correlated with higher viral loads. Elderly patients and patients with diabetes mellitus had adequate cellular and humoral immune responses to SARS-CoV-2 infection, while immunocompromised patients had reduced humoral and cellular immune responses. Our patient cohort was hospitalized for longer compared with previously published cohorts. Longer hospitalization was associated with a high number of nosocomial infections, representing a potential hazard for additional complications to patients. Most importantly, regardless of positive SARS-CoV-2 RNA detection, no virus was culturable beyond a cycle threshold (ct) value of 33 in the majority of samples. Our data clearly indicate that elderly and diabetic patients develop a robust immune response to SARS-CoV-2 and may be safely de-isolated at a ct value of more than 35.


Subject(s)
COVID-19 , Diabetes Mellitus , Aged , Hospitals , Humans , Immunocompromised Host , Monitoring, Immunologic , RNA, Viral , SARS-CoV-2
8.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35214785

ABSTRACT

This study analyzed binding and neutralizing antibody titers up to 6 months after standard vaccination with BNT162b2 (two doses of 30 µg each) in SARS-CoV-2 naïve patients (n = 59) on hemodialysis. Humoral vaccine responses were measured before and 6, 12, and 24 weeks after the first vaccination. A chemiluminescent immunoassay (CLIA) was used to quantify SARS-CoV-2 IgG against the spike glycoprotein. SARS-CoV-2 neutralizing activity was tested against the wild-type virus. A multivariable binary regression model was used to identify risk factors for the absence of humoral immune responses at 6 months. At week 6, vaccine-specific seroconversion was detected in 96.6% of all patients with median anti-SARS-CoV-2 IgGs of 918 BAU/mL. At weeks 12 and 24, seroconversion rates decreased to 91.5% and 79.7%, and corresponding median binding antibody titers declined to 298 BAU/mL and 89 BAU/mL, respectively. Neutralizing antibodies showed a decay from 79.6% at week 6 to 32.8% at week 24. The risk factor with the strongest association for vanishing immune responses was low serum albumin (p = 0.018). Regarding vaccine-specific humoral responses 6 months after the standard BNT162b2 vaccination schedule, SARS-CoV-2 naïve patients receiving hemodialysis must be considered at risk of becoming infected with SARS-CoV-2 and being infectious.

SELECTION OF CITATIONS
SEARCH DETAIL
...