Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 25(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069902

ABSTRACT

Antimicrobial resistance to conventional antibiotics and the limited alternatives to combat plant-threatening pathogens are worldwide problems. Antibiotic lipopeptides exert remarkable membrane activity, which usually is not prone to fast resistance formation, and often show organism-type selectivity. Additional modes of action commonly complement the bioactivity profiles of such compounds. The present work describes a multicomponent-based methodology for the synthesis of cyclic polycationic lipopeptides with stabilized helical structures. The protocol comprises an on solid support Ugi-4-component macrocyclization in the presence of a lipidic isocyanide. Circular dichroism was employed to study the influence of both macrocyclization and lipidation on the amphiphilic helical structure in water and micellar media. First bioactivity studies against model phytopathogens demonstrated a positive effect of the lipidation on the antimicrobial activity.


Subject(s)
Antifungal Agents/chemistry , Lactams/chemistry , Lipopeptides/chemistry , Peptides, Cyclic/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Botrytis/drug effects , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Phytophthora infestans/drug effects
2.
Plant J ; 101(5): 1023-1039, 2020 03.
Article in English | MEDLINE | ID: mdl-31628867

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades are key signalling modules of plant defence responses to pathogen-associated molecular patterns [PAMPs; e.g. the bacterial peptide flagellin (flg22)]. Tandem zinc finger protein 9 (TZF9) is a RNA-binding protein that is phosphorylated by two PAMP-responsive MAPKs, MPK3 and MPK6. We mapped the major phosphosites in TZF9 and showed their importance for controlling in vitro RNA-binding activity, in vivo flg22-induced rapid disappearance of TZF9-labelled processing body-like structures and TZF9 protein turnover. Microarray analysis showed a strong discordance between transcriptome (total mRNA) and translatome (polysome-associated mRNA) in the tzf9 mutant, with more mRNAs associated with ribosomes in the absence of TZF9. This suggests that TZF9 may sequester and inhibit the translation of subsets of mRNAs. Fittingly, TZF9 physically interacts with poly(A)-binding protein 2 (PAB2), a hallmark constituent of stress granules - sites for stress-induced translational stalling/arrest. TZF9 even promotes the assembly of stress granules in the absence of stress. Hence, MAPKs may control defence gene expression post-transcriptionally through release from translation arrest within TZF9-PAB2-containing RNA granules or by perturbing the function of PAB2 in translation control (e.g. in the mRNA closed-loop model of translation).


Subject(s)
Arabidopsis/genetics , Plant Diseases/immunology , Plant Immunity/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Arabidopsis/physiology , Gene Expression , Gene Expression Regulation, Plant , Phosphorylation , Plant Diseases/microbiology , Protein Transport , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL