Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
J Am Chem Soc ; 146(6): 3710-3720, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38308759

ABSTRACT

1/2H and 13C hyperfine coupling constants to 5'-deoxyadenosyl (5'-dAdo•) radical trapped within the active site of the radical S-adenosyl-l-methionine (SAM) enzyme, pyruvate formate lyase-activating enzyme (PFL-AE), both in the absence of substrate and the presence of a reactive peptide-model of the PFL substrate, are completely characteristic of a classical organic free radical whose unpaired electron is localized in the 2pπ orbital of the sp2 C5'-carbon (J. Am. Chem. Soc. 2019, 141, 12139-12146). However, prior electron-nuclear double resonance (ENDOR) measurements had indicated that this 5'-dAdo• free radical is never truly "free": tight van der Waals contact with its target partners and active-site residues guide it in carrying out the exquisitely precise, regioselective reactions that are hallmarks of RS enzymes. Here, our understanding of how the active site chaperones 5'-dAdo• is extended through the finding that this apparently unexceptional organic free radical has an anomalous g-tensor and exhibits significant 57Fe, 13C, 15N, and 2H hyperfine couplings to the adjacent, isotopically labeled, methionine-bound [4Fe-4S]2+ cluster cogenerated with 5'-dAdo• during homolytic cleavage of cluster-bound SAM. The origin of the 57Fe couplings through nonbonded radical-cluster contact is illuminated by a formal exchange-coupling model and broken symmetry-density functional theory computations. Incorporation of ENDOR-derived distances from C5'(dAdo•) to labeled-methionine as structural constraints yields a model for active-site positioning of 5'-dAdo• with a short, nonbonded C5'-Fe distance (∼3 Å). This distance involves substantial motion of 5'-dAdo• toward the unique Fe of the [4Fe-4S]2+ cluster upon S-C(5') bond-cleavage, plausibly an initial step toward formation of the Fe-C5' bond of the organometallic complex, Ω, the central intermediate in catalysis by radical-SAM enzymes.


Subject(s)
Iron-Sulfur Proteins , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Methionine , Electron Spin Resonance Spectroscopy/methods , Catalytic Domain , Racemethionine , Free Radicals/chemistry , Iron-Sulfur Proteins/chemistry
2.
J Am Chem Soc ; 146(8): 5550-5559, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364824

ABSTRACT

OspD is a radical S-adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via α-carbon (Cα) H-atom abstraction to form a peptidyl Cα radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide Cα radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a Cα radical coupled to a single ß-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial Cα radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile Cα radical concomitant with gain of a Val Cα radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central Cα radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.


Subject(s)
Methionine , S-Adenosylmethionine , S-Adenosylmethionine/chemistry , Carbon , Peptides/chemistry , Amino Acids , Racemethionine , Valine
3.
Microbiol Spectr ; 12(2): e0041823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38179920

ABSTRACT

Iron (Fe) and sulfur (S) are required elements for life, and changes in their availability can limit the ecological distribution and function of microorganisms. In anoxic environments, soluble Fe typically exists as ferrous iron [Fe(II)] and S as sulfide (HS-). These species exhibit a strong affinity that ultimately drives the formation of sedimentary pyrite (FeS2). Recently, paradigm-shifting studies indicate that Fe and S in FeS2 can be made bioavailable by methanogens through a reductive dissolution process. However, the impact of the utilization of FeS2, as opposed to canonical Fe and S sources, on the phenotype of cells is not fully understood. Here, shotgun proteomics was utilized to measure changes in the phenotype of Methanosarcina barkeri MS grown with FeS2, Fe(II)/HS-, or Fe(II)/cysteine. Shotgun proteomics tracked 1,019 proteins overall, with 307 observed to change between growth conditions. Functional characterization and pathway analyses revealed these changes to be systemic and largely tangential to Fe/S metabolism. As a final step, the proteomics data were viewed with respect to previously collected transcriptomics data to deepen the analysis. Presented here is evidence that M. barkeri adopts distinct phenotypes to exploit specific sources of Fe and S in its environment. This is supported by observed protein abundance changes across broad categories of cellular biology. DNA adjacent metabolism, central carbon metabolism methanogenesis, metal trafficking, quorum sensing, and porphyrin biosynthesis pathways are all features in the phenotypic differentiation. Differences in trace metal availability attributed to complexation with HS-, either as a component of the growth medium [Fe(II)/HS-] or generated through reduction of FeS2, were likely a major factor underpinning these phenotypic differences.IMPORTANCEThe methanogenic archaeon Methanosarcina barkeri holds great potential for industrial bio-mining and energy generation technologies. Much of the biochemistry of this microbe is poorly understood, and its characterization will provide a glimpse into biological processes that evolved close to life's origin. The discovery of its ability to extract iron and sulfur from bulk, solid-phase minerals shifted a longstanding paradigm that these elements were inaccessible to biological systems. The full elucidation of this process has the potential to help scientists and engineers extract valuable metals from low-grade ore and mine waste generating energy in the form of methane while doing so.


Subject(s)
Methanosarcina barkeri , Proteome , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Proteome/metabolism , Iron/metabolism , Minerals/metabolism , Sulfur/metabolism , Ferrous Compounds/metabolism
4.
Proc Natl Acad Sci U S A ; 120(47): e2314696120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956301

ABSTRACT

Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.


Subject(s)
Iron-Sulfur Proteins , S-Adenosylmethionine , S-Adenosylmethionine/chemistry , Acetyltransferases/metabolism , Methionine , Electron Spin Resonance Spectroscopy , Peptides/metabolism , Iron-Sulfur Proteins/metabolism
5.
Chem Commun (Camb) ; 59(58): 8929-8932, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37376915

ABSTRACT

Here we describe maturation of the [FeFe]-hydrogenase from its [4Fe-4S]-bound precursor state by using the synthetic complex [Fe2(µ-SH)2(CN)2(CO)4]2- together with HydF and components of the glycine cleavage system, but in the absence of the maturases HydE and HydG. This semisynthetic and fully-defined maturation provides new insights into the nature of H-cluster biosynthesis.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Hydrogenase/metabolism , Electron Spin Resonance Spectroscopy , Guanosine Triphosphate
6.
J Am Chem Soc ; 145(25): 13879-13887, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37307050

ABSTRACT

The radical S-adenosyl methionine (SAM) enzyme superfamily has widespread roles in hydrogen atom abstraction reactions of crucial biological importance. In these enzymes, reductive cleavage of SAM bound to a [4Fe-4S]1+ cluster generates the 5'-deoxyadenosyl radical (5'-dAdo•) which ultimately abstracts an H atom from the substrate. However, overwhelming experimental evidence has surprisingly revealed an obligatory organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond, whose properties are the target of this theoretical investigation. We report a readily applied, two-configuration version of broken symmetry DFT, denoted 2C-DFT, designed to allow the accurate description of the hyperfine coupling constants and g-tensors of an alkyl group bound to a multimetallic iron-sulfur cluster. This approach has been validated by the excellent agreement of its results both with those of multiconfigurational complete active space self-consistent field computations for a series of model complexes and with the results from electron nuclear double-resonance/electron paramagnetic resonance spectroscopic studies for the crystallographically characterized complex, M-CH3, a [4Fe-4S] cluster with a Fe-CH3 bond. The likewise excellent agreement between spectroscopic results and 2C-DFT computations for Ω confirm its identity as an organometallic complex with a bond between an Fe of the [4Fe-4S] cluster and C5' of the deoxyadenosyl moiety, as first proposed.

7.
J Biol Chem ; 299(6): 104791, 2023 06.
Article in English | MEDLINE | ID: mdl-37156396

ABSTRACT

Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S]2+/+ cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S]2+ state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.


Subject(s)
Acetyltransferases , S-Adenosylmethionine , Acetyltransferases/chemistry , Acetyltransferases/metabolism , Catalytic Domain , Crystallization , Dithionite , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Methionine/metabolism , Oxidation-Reduction , S-Adenosylmethionine/metabolism
8.
Annu Rev Biochem ; 92: 333-349, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37018846

ABSTRACT

Radical S-adenosylmethionine (SAM) enzymes use a site-differentiated [4Fe-4S] cluster and SAM to initiate radical reactions through liberation of the 5'-deoxyadenosyl (5'-dAdo•) radical. They form the largest enzyme superfamily, with more than 700,000 unique sequences currently, and their numbers continue to grow as a result of ongoing bioinformatics efforts. The range of extremely diverse, highly regio- and stereo-specific reactions known to be catalyzed by radical SAM superfamily members is remarkable. The common mechanism of radical initiation in the radical SAM superfamily is the focus of this review. Most surprising is the presence of an organometallic intermediate, Ω, exhibiting an Fe-C5'-adenosyl bond. Regioselective reductive cleavage of the SAM S-C5' bond produces 5'-dAdo• to form Ω, with the regioselectivity originating in the Jahn-Teller effect. Ω liberates the free 5'-dAdo• as the catalytically active intermediate through homolysis of the Fe-C5' bond, in analogy to Co-C5' bond homolysis in B12, which was once viewed as biology's choice of radical generator.


Subject(s)
Iron-Sulfur Proteins , S-Adenosylmethionine , S-Adenosylmethionine/chemistry , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/chemistry
9.
FEBS Lett ; 597(1): 92-101, 2023 01.
Article in English | MEDLINE | ID: mdl-36251330

ABSTRACT

Enzymes that use a [4Fe-4S]1+ cluster plus S-adenosyl-l-methionine (SAM) to initiate radical reactions (radical SAM) form the largest enzyme superfamily, with over half a million members across the tree of life. This review summarizes recent work revealing the radical SAM reaction pathway, which ultimately liberates the 5'-deoxyadenosyl (5'-dAdo•) radical to perform extremely diverse, highly regio- and stereo-specific, transformations. Most surprising was the discovery of an organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond. Ω liberates 5'-dAdo• through homolysis of the Fe-C5' bond, in analogy to Co-C5' bond homolysis in B12 , previously viewed as biology's paradigmatic radical generator. The 5'-dAdo• has been trapped and characterized in radical SAM enzymes via a recently discovered photoreactivity of the [4Fe-4S]+ /SAM complex, and has been confirmed as a catalytically active intermediate in enzyme catalysis. The regioselective SAM S-C bond cleavage to produce 5'-dAdo• originates in the Jahn-Teller effect. The simplicity of SAM as a radical precursor, and the exquisite control of 5'-dAdo• reactivity in radical SAM enzymes, may be why radical SAM enzymes pervade the tree of life, while B12 enzymes are only a few.


Subject(s)
Iron-Sulfur Proteins , S-Adenosylmethionine , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Iron-Sulfur Proteins/metabolism , Enzymes/chemistry , Enzymes/metabolism
10.
Angew Chem Int Ed Engl ; 61(49): e202212074, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36137942

ABSTRACT

The [FeFe]-hydrogenase H-cluster is a complex organometallic cofactor whose assembly and installation requires three dedicated accessory proteins referred to as HydE, HydF, and HydG. The roles of these maturases and the precise mechanisms by which they synthesize and insert the H-cluster are not fully understood. This Minireview will focus on new insights into the [FeFe]-hydrogenase maturation process that have been provided by in vitro approaches in which the biosynthetic pathway has been partially or fully reconstructed using semisynthetic and enzyme-based approaches. Specifically, the application of these in vitro, semisynthetic, and fully defined approaches has shed light on the roles of individual maturation enzymes, the nature of H-cluster assembly intermediates, the molecular precursors of H-cluster ligands, and the sequence of steps involved in [FeFe]-hydrogenase maturation.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism
11.
Microbiol Spectr ; 10(4): e0189322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35876569

ABSTRACT

Iron sulfur (Fe-S) proteins are essential and ubiquitous across all domains of life, yet the mechanisms underpinning assimilation of iron (Fe) and sulfur (S) and biogenesis of Fe-S clusters are poorly understood. This is particularly true for anaerobic methanogenic archaea, which are known to employ more Fe-S proteins than other prokaryotes. Here, we utilized a deep proteomics analysis of Methanococcus voltae A3 cultured in the presence of either synthetic pyrite (FeS2) or aqueous forms of ferrous iron and sulfide to elucidate physiological responses to growth on mineral or nonmineral sources of Fe and S. The liquid chromatography-mass spectrometry (LCMS) shotgun proteomics analysis included 77% of the predicted proteome. Through a comparative analysis of intra- and extracellular proteomes, candidate proteins associated with FeS2 reductive dissolution, Fe and S acquisition, and the subsequent transport, trafficking, and storage of Fe and S were identified. The proteomic response shows a large and balanced change, suggesting that M. voltae makes physiological adjustments involving a range of biochemical processes based on the available nutrient source. Among the proteins differentially regulated were members of core methanogenesis, oxidoreductases, membrane proteins putatively involved in transport, Fe-S binding ferredoxin and radical S-adenosylmethionine proteins, ribosomal proteins, and intracellular proteins involved in Fe-S cluster assembly and storage. This work improves our understanding of ancient biogeochemical processes and can support efforts in biomining of minerals. IMPORTANCE Clusters of iron and sulfur are key components of the active sites of enzymes that facilitate microbial conversion of light or electrical energy into chemical bonds. The proteins responsible for transporting iron and sulfur into cells and assembling these elements into metal clusters are not well understood. Using a microorganism that has an unusually high demand for iron and sulfur, we conducted a global investigation of cellular proteins and how they change based on the mineral forms of iron and sulfur. Understanding this process will answer questions about life on early earth and has application in biomining and sustainable sources of energy.


Subject(s)
Iron-Sulfur Proteins , Methanococcus , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Methanococcus/metabolism , Minerals/metabolism , Proteomics , Sulfur/metabolism
12.
Angew Chem Int Ed Engl ; 61(22): e202203413, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35319808

ABSTRACT

Maturation of [FeFe]-hydrogenase (HydA) involves synthesis of a CO, CN- , and dithiomethylamine (DTMA)-coordinated 2Fe subcluster that is inserted into HydA to make the active hydrogenase. This process requires three maturation enzymes: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. In vitro maturation with purified maturation enzymes has been possible only when clarified cell lysate was added, with the lysate presumably providing essential components for DTMA synthesis and delivery. Here we report maturation of [FeFe]-hydrogenase using a fully defined system that includes components of the glycine cleavage system (GCS), but no cell lysate. Our results reveal for the first time an essential role for the aminomethyl-lipoyl-H-protein of the GCS in hydrogenase maturation and the synthesis of the DTMA ligand of the H-cluster. In addition, we show that ammonia is the source of the bridgehead nitrogen of DTMA.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Electron Spin Resonance Spectroscopy , Hydrogenase/metabolism , Ligands , S-Adenosylmethionine
13.
J Am Chem Soc ; 144(11): 5087-5098, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35258967

ABSTRACT

Radical S-adenosyl-l-methionine (SAM) enzymes employ a [4Fe-4S] cluster and SAM to initiate diverse radical reactions via either H-atom abstraction or substrate adenosylation. Here we use freeze-quench techniques together with electron paramagnetic resonance (EPR) spectroscopy to provide snapshots of the reaction pathway in an adenosylation reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme on a peptide substrate containing a dehydroalanine residue in place of the target glycine. The reaction proceeds via the initial formation of the organometallic intermediate Ω, as evidenced by the characteristic EPR signal with g∥ = 2.035 and g⊥ = 2.004 observed when the reaction is freeze-quenched at 500 ms. Thermal annealing of frozen Ω converts it into a second paramagnetic species centered at giso = 2.004; this second species was generated directly using freeze-quench at intermediate times (∼8 s) and unequivocally identified via isotopic labeling and EPR spectroscopy as the tertiary peptide radical resulting from adenosylation of the peptide substrate. An additional paramagnetic species observed in samples quenched at intermediate times was revealed through thermal annealing while frozen and spectral subtraction as the SAM-derived 5'-deoxyadenosyl radical (5'-dAdo•). The time course of the 5'-dAdo• and tertiary peptide radical EPR signals reveals that the former generates the latter. These results thus support a mechanism in which Ω liberates 5'-dAdo• by Fe-C5' bond homolysis, and the 5'-dAdo• attacks the dehydroalanine residue of the peptide substrate to form the adenosylated peptide radical species. The results thus provide a picture of a catalytically competent 5'-dAdo• intermediate trapped just prior to reaction with the substrate.


Subject(s)
Methionine , S-Adenosylmethionine , Catalysis , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , S-Adenosylmethionine/metabolism
14.
J Inorg Biochem ; 227: 111662, 2022 02.
Article in English | MEDLINE | ID: mdl-34847521

ABSTRACT

Glycerol dehydratase activating enzyme (GD-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential amino acid backbone radical onto glycerol dehydratase in bacteria under anaerobic conditions. Although GD-AE is closely homologous to other radical SAM activases that have been shown to cleave the S-C(5') bond of SAM to produce 5'-deoxyadenosine (5'-dAdoH) and methionine, GD-AE from Clostridium butyricum has been reported to instead cleave the S-C(γ) bond of SAM to yield 5'-deoxy-5'-(methylthio)adenosine (MTA). Here we re-investigate the SAM cleavage reaction catalyzed by GD-AE and show that it produces the widely observed 5'-dAdoH, and not the less conventional product MTA.


Subject(s)
Bacterial Proteins/chemistry , Clostridium butyricum/enzymology , Deoxyadenosines/chemistry , Hydro-Lyases/chemistry , S-Adenosylmethionine/chemistry , Vitamin B 12/chemistry
15.
Psychol Aging ; 36(6): 679-693, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34516172

ABSTRACT

Emotions and symptoms are often overestimated in retrospective ratings, a phenomenon referred to as the "memory-experience gap." Some research has shown that this gap is less pronounced among older compared to younger adults for self-reported negative affect, but it is not known whether these age differences are evident consistently across domains of well-being and why these age differences emerge. In this study, we examined age differences in the memory-experience gap for emotional (positive and negative affect), social (loneliness), and physical (pain, fatigue) well-being. We also tested four variables that could plausibly explain age differences in the gap: (a) episodic memory and executive functioning, (b) the age-related positivity effect, (c) variability of daily experiences, and (d) socially desirable responding. Adults (n = 477) from three age groups (21-44, 45-64, 65+ years old) participated in a 21-day diary study. Participants completed daily end-of-day ratings and retrospective ratings of the same constructs over different recall periods (3, 7, 14, and 21 days). Results showed that, relative to young and middle-aged adults, older adults had a smaller memory-experience gap for negative affect and loneliness. Lower day-to-day variability partly explained why the gap was smaller for older adults. There was no evidence that the magnitude of the memory-experience gap for positive affect, pain or fatigue depended on age. We recommend that future research considers how variability in daily experiences can impact age differences in retrospective self-reports of well-being. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Aging/psychology , Memory, Episodic , Mental Recall , Adult , Affect , Aged , Fatigue , Female , Humans , Loneliness , Male , Middle Aged , Pain , Retrospective Studies , Young Adult
16.
Dalton Trans ; 50(30): 10405-10422, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34240096

ABSTRACT

The organometallic H-cluster of the [FeFe]-hydrogenase consists of a [4Fe-4S] cubane bridged via a cysteinyl thiolate to a 2Fe subcluster ([2Fe]H) containing CO, CN-, and dithiomethylamine (DTMA) ligands. The H-cluster is synthesized by three dedicated maturation proteins: the radical SAM enzymes HydE and HydG synthesize the non-protein ligands, while the GTPase HydF serves as a scaffold for assembly of [2Fe]H prior to its delivery to the [FeFe]-hydrogenase containing the [4Fe-4S] cubane. HydG uses l-tyrosine as a substrate, cleaving it to produce p-cresol as well as the CO and CN- ligands to the H-cluster, although there is some question as to whether these are formed as free diatomics or as part of a [Fe(CO)2(CN)] synthon. Here we show that Clostridium acetobutylicum (C.a.) HydG catalyzes formation of multiple equivalents of free CO at rates comparable to those for CN- formation. Free CN- is also formed in excess molar equivalents over protein. A g = 8.9 EPR signal is observed for C.a. HydG reconstituted to load the 5th "dangler" iron of the auxiliary [4Fe-4S][FeCys] cluster and is assigned to this "dangler-loaded" cluster state. Free CO and CN- formation and the degree of activation of [FeFe]-hydrogenase all occur regardless of dangler loading, but are increased 10-35% in the dangler-loaded HydG; this indicates the dangler iron is not essential to this process but may affect relevant catalysis. During HydG turnover in the presence of myoglobin, the g = 8.9 signal remains unchanged, indicating that a [Fe(CO)2(CN)(Cys)] synthon is not formed at the dangler iron. Mutation of the only protein ligand to the dangler iron, H272, to alanine nearly completely abolishes both free CO formation and hydrogenase activation, however results show this is not due solely to the loss of the dangler iron. In experiments with wild type and H272A HydG, and with different degrees of dangler loading, we observe a consistent correlation between free CO/CN- formation and hydrogenase activation. Taken in full, our results point to free CO/CN-, but not an [Fe(CO)2(CN)(Cys)] synthon, as essential species in hydrogenase maturation.


Subject(s)
Hydrogenase , Clostridium acetobutylicum , Iron-Sulfur Proteins
17.
J Bacteriol ; 203(19): e0014621, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34251867

ABSTRACT

Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS2), generating aqueous iron sulfide (FeSaq) clusters that are likely assimilated as a source of Fe and S. Here, we compared the phenotypes of Methanococcus voltae grown with FeS2 or ferrous iron [Fe(II)] and sulfide (HS-). FeS2-grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS--grown cells. Whole-cell electron paramagnetic resonance revealed similar distributions of paramagnetic Fe, although FeS2-grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS2-grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS2-grown cells. We interpret these data to indicate that, in FeS2-grown cells, DtxR cannot sense Fe(II) and therefore cannot downregulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeSaq), leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS2 is the most abundant sulfide mineral in the Earth's crust and is common in environments inhabited by methanogenic archaea. FeS2 can be reduced by methanogens, yielding aqueous FeSaq clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were upregulated in FeS2-grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeSaq. These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.


Subject(s)
Iron/metabolism , Methanococcus/metabolism , Sulfides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Carrier Proteins , Electron Spin Resonance Spectroscopy , Gene Expression Regulation, Bacterial , Iron/chemistry , Metal Nanoparticles , Sulfides/chemistry
18.
Angew Chem Int Ed Engl ; 60(9): 4666-4672, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33935588

ABSTRACT

Radical S-adenosyl-l-methionine (SAM) enzymes initiate biological radical reactions with the 5'-deoxyadenosyl radical (5'-dAdo•). A [4Fe-4S]+ cluster reductively cleaves SAM to form the Ω organometallic intermediate in which the 5'-deoxyadenosyl moiety is directly bound to the unique iron of the [4Fe-4S] cluster, with subsequent liberation of 5'-dAdo•. Here we present synthesis of the SAM analog S-adenosyl-l-ethionine (SAE) and show SAE is a mechanistically-equivalent SAM-alternative for HydG, both supporting enzymatic turnover of substrate tyrosine and forming the organometallic intermediate Ω. Photolysis of SAE bound to HydG forms an ethyl radical trapped in the active site. The ethyl radical withstands prolonged storage at 77 K and its EPR signal is only partially lost upon annealing at 100 K, making it significantly less reactive than the methyl radical formed by SAM photolysis. Upon annealing above 77K, the ethyl radical adds to the [4Fe-4S]2+ cluster, generating an ethyl-[4Fe-4S]3+ organometallic species termed ΩE.


Subject(s)
Escherichia coli Proteins/metabolism , Ethionine/metabolism , Trans-Activators/metabolism , Biocatalysis , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/chemistry , Ethionine/analogs & derivatives , Ethionine/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Models, Molecular , Molecular Structure , Trans-Activators/chemistry
19.
J Am Chem Soc ; 143(1): 335-348, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33372786

ABSTRACT

Catalysis by canonical radical S-adenosyl-l-methionine (SAM) enzymes involves electron transfer (ET) from [4Fe-4S]+ to SAM, generating an R3S0 radical that undergoes regioselective homolytic reductive cleavage of the S-C5' bond to generate the 5'-dAdo· radical. However, cryogenic photoinduced S-C bond cleavage has regioselectively yielded either 5'-dAdo· or ·CH3, and indeed, each of the three SAM S-C bonds can be regioselectively cleaved in an RS enzyme. This diversity highlights a longstanding central question: what controls regioselective homolytic S-C bond cleavage upon SAM reduction? We here provide an unexpected answer, founded on our observation that photoinduced S-C bond cleavage in multiple canonical RS enzymes reveals two enzyme classes: in one, photolysis forms 5'-dAdo·, and in another it forms ·CH3. The identity of the cleaved S-C bond correlates with SAM ribose conformation but not with positioning and orientation of the sulfonium center relative to the [4Fe-4S] cluster. We have recognized the reduced-SAM R3S0 radical is a (2E) state with its antibonding unpaired electron in an orbital doublet, which renders R3S0 Jahn-Teller (JT)-active and therefore subject to vibronically induced distortion. Active-site forces induce a JT distortion that localizes the odd electron in a single priority S-C antibond, which undergoes regioselective cleavage. In photolytic cleavage those forces act through control of the ribose conformation and are transmitted to the sulfur via the S-C5' bond, but during catalysis thermally induced conformational changes that enable ET from a cluster iron generate dominant additional forces that specifically select S-C5' for cleavage. This motion also can explain how 5'-dAdo· subsequently forms the organometallic intermediate Ω.


Subject(s)
Oxidoreductases Acting on Sulfur Group Donors/chemistry , S-Adenosylmethionine/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/radiation effects , Biocatalysis , Catalytic Domain , Clostridium acetobutylicum/enzymology , Density Functional Theory , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/radiation effects , Light , Models, Chemical , Molecular Structure , Oxidation-Reduction/radiation effects , Oxidoreductases Acting on Sulfur Group Donors/radiation effects , Photolysis , S-Adenosylmethionine/radiation effects , Thermotoga maritima/enzymology
20.
J Pain ; 22(4): 359-370, 2021 04.
Article in English | MEDLINE | ID: mdl-32947012

ABSTRACT

Pain assessment that fully represents patients' pain experiences is essential for chronic pain research and management. The traditional primary outcome measure has been a patient's average pain intensity over a time period. In this series of 3 articles, we examine whether pain assessment can be enhanced by considering additional outcome measures capturing temporal aspects of pain, such as pain maxima, duration, and variability. Ecological momentary assessment makes the assessment of such indices readily available. In this first article, we discuss the rationale for considering additional pain indices derived from ecological momentary assessment and examine which are most important to stakeholders. Patients (n = 32), clinicians (n = 20), and clinical trialists (n = 20) were interviewed about their preference rankings for Average, Worst, and Least Pain, Time in High Pain, Time in No/Low Pain, Pain Variability, and Pain Unpredictability. Each stakeholder group displayed a distinct preference hierarchy for different indices, and there were few commonalities between groups. Patients favored Worst Pain and Time in High Pain, followed by Pain Variability and Unpredictability. Trialists favored Average Pain, whereas clinicians favored Worst Pain. Results suggest that multiple temporal aspects of pain are relevant for stakeholders and should be considered when evaluating the efficacy of pain management. PERSPECTIVE: Examining which aspects of pain are most important to measure from the perspective of different stakeholders can facilitate efforts to include all relevant treatment outcomes. Our study suggests that multiple temporal aspects of pain intensity are important to stakeholders. This should be considered when evaluating the efficacy of pain management.


Subject(s)
Attitude of Health Personnel , Ecological Momentary Assessment , Pain Measurement , Pain/diagnosis , Patient Preference , Severity of Illness Index , Adult , Aged , Clinical Trials as Topic , Female , Health Personnel , Humans , Male , Middle Aged , Research Personnel , Stakeholder Participation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...