Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931191

ABSTRACT

Skeletal muscle is composed of bundles of muscle fibers with distinctive characteristics. Oxidative muscle fiber types contain higher mitochondrial content, relying primarily on oxidative phosphorylation for ATP generation. Notably, as a result of obesity, or following prolonged exposure to a high-fat diet, skeletal muscle undergoes a shift in fiber type toward a glycolytic type. Mitochondria are highly dynamic organelles, constantly undergoing mitochondrial biogenesis and dynamic processes. Our study aims to explore the impact of obesity on skeletal muscle mitochondrial biogenesis and dynamics and also ascertain whether the skeletal muscle fiber type shift occurs from the aberrant mitochondrial machinery. Furthermore, we investigated the impact of exercise in preserving the oxidative muscle fiber types despite obesity. Mice were subjected to a normal standard chow and water or high-fat diet with sugar water (HFS) with or without exercise training. After 12 weeks of treatment, the HFS diet resulted in a noteworthy reduction in the markers of mitochondrial content, which was recovered by exercise training. Furthermore, higher mitochondrial biogenesis markers were observed in the exercised group with a subsequent increase in the mitochondrial fission marker. In conclusion, these findings imply a beneficial impact of moderate-intensity exercise on the preservation of oxidative capacity in the muscle of obese mouse models.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Mitochondria, Muscle , Muscle, Skeletal , Obesity , Organelle Biogenesis , Physical Conditioning, Animal , Animals , Obesity/metabolism , Diet, High-Fat/adverse effects , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Mice , Male , Mitochondria, Muscle/metabolism , Mice, Inbred C57BL , Biomarkers/metabolism , Mitochondrial Dynamics , Muscle Fibers, Skeletal/metabolism
2.
Metabolites ; 13(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37755294

ABSTRACT

Type 2 diabetes mellitus and osteoarthritis (OA) often present as comorbidities. We examined the role of plasma IL-6, chondrocyte MMP-13, and col10a expression in the development of OA in obese diabetic mice. We further investigated dietary genistein and exercise training as potential mitigators of OA. One hundred adult mice (50 females, 50 males) aged 6 weeks were randomized into 5 groups, including lean controls, obese diabetic controls, and obese diabetic mice treated with genistein, exercise training, and genistein plus exercise training. The obese diabetic state was induced by feeding the mice a high-fat, high-sugar diet. Genistein was incorporated into the diet at a concentration of 600 mg genistein/kg. Exercise training was performed on a treadmill and consisted of daily 30 min sessions at 12 m/min, 5 days/week for a 12-week period. After treatment, plasma was collected, and proximal tibias were removed for analysis. Plasma IL-6 and MMP-13 were elevated while col10a was reduced in obese diabetic mice in comparison to lean controls. Dietary genistein treatment reduced IL-6 and MMP-13 expression and increased col10a expression. Histological examination of articular cartilage showed reduced thickness of the uncalcified zones and proteoglycan content in the cartilage of diabetic mice in comparison to mice fed genistein. Exercise training had no significant effect. In conclusion, genistein (and not exercise training) attenuates OA by reducing IL-6 and MMP-13 expression in diabetic mice.

3.
Metabolites ; 13(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36984879

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with cognitive decline and characterized by amyloid-ß plaques and neurofibrillary tau tangles. Although AD's exact pathophysiology remains unclear, oxidative stress is known to play a role in the neurodegenerative process. Since no curative treatment exists, antioxidants represent a potential treatment for AD due to their ability to modulate oxidative stress. Therefore, this review aims to examine the impact of antioxidant supplementation and its potential mechanisms on cognitive function. The review primarily discusses research articles published between 2012 and 2022 reporting the results of clinical trials involving antioxidant supplementation on cognitive function in individuals with AD. Antioxidant supplementation included probiotics, selenium, melatonin, resveratrol, rosmarinic acid, carotenoids, curcumin, vitamin E, and coenzyme Q. While the studies included in this review did not provide much evidence for the beneficial role of antioxidant supplements on cognitive function in AD, the results varied from antioxidant to antioxidant and among trials examining the same antioxidant. Furthermore, many of the studies' findings face several limitations, including short trial durations, small sample sizes, and a lack of diversity among study participants. As a result, more research is required to examine the impact of antioxidant supplementation on cognitive function in AD.

4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902074

ABSTRACT

T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Hyperglycemia , Momordica charantia , Plant Extracts , Animals , Alzheimer Disease/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology
5.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769296

ABSTRACT

Skeletal muscle atrophy is prevalent in a myriad of pathological conditions, such as diabetes, denervation, long-term immobility, malnutrition, sarcopenia, obesity, Alzheimer's disease, and cachexia. This is a critically important topic that has significance in the health of the current society, particularly older adults. The most damaging effect of muscle atrophy is the decreased quality of life from functional disability, increased risk of fractures, decreased basal metabolic rate, and reduced bone mineral density. Most skeletal muscle in humans contains slow oxidative, fast oxidative, and fast glycolytic muscle fiber types. Depending on the pathological condition, either oxidative or glycolytic muscle type may be affected to a greater extent. This review article discusses the prevalence of skeletal muscle atrophy and several mechanisms, with an emphasis on high-fat, high-sugar diet patterns, obesity, and diabetes, but including other conditions such as sarcopenia, Alzheimer's disease, cancer cachexia, and heart failure.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Sarcopenia , Humans , Aged , Sarcopenia/epidemiology , Sarcopenia/etiology , Sarcopenia/metabolism , Cachexia/epidemiology , Cachexia/etiology , Cachexia/metabolism , Prevalence , Alzheimer Disease/metabolism , Quality of Life , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Diabetes Mellitus/metabolism , Obesity/complications , Obesity/epidemiology , Obesity/metabolism
6.
Article in English | MEDLINE | ID: mdl-36554779

ABSTRACT

INTRODUCTION: In the United States, a significant amount of the population is affected by hyperlipidemia, which is associated with increased levels of serum low-density lipoprotein (LDL-C) and risk of cardiovascular disease. As of 2019, the guidelines set by the American College of Cardiology/American Heart Association advocate for the use of statins as the major contributor to lowering serum LDL-C. While proven to be effective, side effects, including muscle-related symptoms and new-onset diabetes mellitus, can make patients unable to tolerate statin therapy. Additionally, there is a subset of the population which does not approach a recommended LDL-C goal on statin treatment. Due to these findings, it was deemed necessary to review the literature of current statin-alternative lipid-lowering therapies. METHODS: A systematic review of preclinical and clinical papers, and a current meta-analysis, was performed using PubMed and Google Scholar. Following the literature review, a meta-analysis was conducted using ProMeta 3. RESULTS: Through systematic review and meta-analysis of the current literature, it is suggested that newer lipid-lowering therapies such as proprotein convertase subtilsin-kixen type 9 (PCSK9) inhibitors are a safe and effective statin alternative for the population with statin intolerance. PCSK9 inhibitors were shown to have no significant effect in causing myalgia in patients and showed no increase in adverse cardiovascular outcomes compared to a control of a current antilipemic medication regimen. DISCUSSION: There are many statin-alternative therapies that should be investigated further as a potential replacement for patients with statin intolerance or as an addition for patients with statin resistance.


Subject(s)
Anticholesteremic Agents , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Proprotein Convertase 9 , PCSK9 Inhibitors , Cholesterol, LDL , Cardiovascular Diseases/etiology , Anticholesteremic Agents/therapeutic use
7.
Article in English | MEDLINE | ID: mdl-36361051

ABSTRACT

Growing evidence has demonstrated the benefits of regular exercise on cardiovascular, neural, and cognitive function in humans with Alzheimer's disease (AD). However, the consequences of AD on gastrointestinal morphology and the effects of regular exercise, which plays an important role against the development of certain gastrointestinal-related diseases, are still poorly understood. Therefore, to assess the changes in intestinal structure in a mouse model of AD and the impact of exercise, 2-month-old 3xTg-AD male mice were subjected to treadmill running 5 days per week for a period of 5 months. Jejunum from 3xTg-AD mice analyzed by histochemical methods revealed significant alterations in morphology. Compared to age-matched wild-type (WT) mice, villi length and crypt depth were increased, and collagen content of jejunum was elevated in 3xTg-AD mice. Jejunum wall dimensions, expressed as total wall thickness, outer longitudinal thickness, and inner circular thickness were decreased in 3xTg-AD compared to WT. Smooth muscle actin expression in jejunal wall was decreased in 3xTg-AD. Most of these aberrations were improved with exercise. Western blot expression of cyclin dependent kinase 5 (CDK5, involved in neural cell death and hyperphosphorylation of tau), was elevated in 3xTg-AD jejunum. This was associated with a 4-fold increase in tau5 expression. Exercise prevented the increase in expression of CDK5 and tau5. Expression of caspase 3 (an apoptotic marker) was elevated in 3xTg-AD jejunum and exercise prevented this. The results of our study indicate that the abnormalities in jejunum of the 3xTg mouse model of AD were prevented with exercise training.


Subject(s)
Alzheimer Disease , Humans , Animals , Mice , Male , Infant , Alzheimer Disease/complications , Mice, Transgenic , Jejunum/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Disease Models, Animal
8.
Water Environ Res ; 94(10): e10793, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36184901

ABSTRACT

Anaerobic digestion stabilizes municipal sludge through total solids reduction and biogas production. It is generally accepted that hydrolysis accounts for the rate-limiting step of municipal sludge anaerobic digestion, impacting the overall rates of solids reduction and methane production. Technically, the sludge hydrolysis rate can be enhanced by the application of thermal hydrolysis pretreatment (THP) and is also affected by the total solids concentration, temperature, and solids retention time used in the anaerobic digestion. This study systematically analyzed and compared ways to take these four factors into the consideration of modern anaerobic digestion system for achieving the maximum solid reduction. Results showed that thermophilic anaerobic digestion was superior to mesophilic anaerobic digestion in terms of solids reduction but vice versa in terms of the methane production when integrated with THP. This difference has to do with the intermediate product accumulation and inhibition when hydrolysis outpaced methanogenesis in THP-enhanced thermophilic anaerobic digestion, which can be mitigated by adjusting the solids retention time. PRACTITIONER POINTS: THP followed by TAD offers the greatest solids reduction rate. THP followed by MAD offered the greatest methane production rate. FAN inhibition appears to be an ultimate limiting factor constraining the methane production rate. In situ ammonia removal technique should be developed to further unblock the rate-limiting step.


Subject(s)
Biofuels , Sewage , Ammonia , Anaerobiosis , Bioreactors , Methane
9.
Diabetes Metab Syndr Obes ; 15: 2157-2172, 2022.
Article in English | MEDLINE | ID: mdl-35911503

ABSTRACT

Purpose: Metabolic dysfunction-associated fatty liver disease (MAFLD) is fueled by escalations in both sedentary behavior and caloric intake and is noted in obese type 2 diabetic (T2DM) patients. This study aimed to examine the effects of exercise and the phytoestrogen genistein in mice fed a high fat (60% fat) high sugar (55% fructose with 45% sucrose), HFHS diet. Methods: Male C57BL/6J mice were assigned to five groups: HFHS, HFHS with genistein (600 mg/kg diet, HFHS+Gen), HFHS with moderate exercise (HFHS+Ex), and HFHS with combined genistein and moderate exercise (HFHS-Gen+Ex). Control lean mice were fed standard chow and water. Exercise consisted of 30-minute sessions of treadmill running five days/week for the 12-week study duration. Body weight was assessed weekly. Liver, kidney, fecal pellets and serum were extracted at the end of the study and maintained at -80°C. Results: After 12 weeks of treatment, mice in the HFHS group had the highest hepatic lipid content. Plasma levels of glucose, insulin, leptin, cholesterol, amylin, and total fat content were significantly elevated in HFHS mice compared to control mice. HFHS feeding increased protein expression of carnitine palmitoyltransferase 1b (CPT-1b isoform) in gastrocnemius, CPT1a, glucose transporter protein 2 (GLUT2), glucocorticoid receptor (GR), and fructose 1,6-bisphosphate 1 (FBP1) expression in liver. Exercise alone had minor effects on these metabolic abnormalities. Genistein alone resulted in improvements in body weight, fat content, amylin, insulin sensitivity, and liver histopathology, GR, FBP1, and acetyl-CoA carboxylase 1 (ACC1). Combination treatment resulted in additional metabolic improvements, including reductions in hepatic lipid content and lipid area, alanine transferase activity, CPT1b, and CPT1a. Conclusion: Our results indicate that a HFHS diet is obesogenic, inducing metabolic perturbations consistent with T2DM and MAFLD. Genistein alone and genistein combined with moderate intensity exercise were effective in reducing MAFLD and the aberrations induced by chronic HFHS feeding.

10.
Oxid Med Cell Longev ; 2022: 1560435, 2022.
Article in English | MEDLINE | ID: mdl-35620577

ABSTRACT

In recent decades, a shift in the nutritional landscape to the Western-style diet has led to an unprecedented rise in the prevalence of obesity and neurodegenerative diseases. Consumption of a healthy diet and engaging in regular physical activity represents safe and affordable approaches known to mitigate the adverse consequences of the Western diet. We examined whether genistein treatment, exercise training, and a combination treatment (genistein and exercise training) mitigated the effects of a Western diet-induced by high-fat, high-sugar (HFHS) in brain of female mice. HFHS increased the amyloid-beta (Aß) load and phosphorylation of tau, apoptosis, and decreased brain-derived neurotrophic factor (BDNF) levels. Exercise training and genistein each afforded modest protection on Aß accumulation and apoptosis, and both increased BDNF. The greatest neuroprotective effect occurred with combination treatment. BDNF and all markers of Aß accumulation, phosphorylation of tau, and apoptosis were improved with combined treatment. In a separate series of experiments, PC12 cells were exposed to high glucose (HG) and palmitate (PA) to determine cell viability with genistein as well as in the presence of tamoxifen, an estrogen receptor antagonist, to assess a mechanism of action of genistein on cell apoptosis. Genistein prevented the neurotoxic effects of HG and PA in PC12 cells and tamoxifen blocked the beneficial effects of genistein on apoptosis. Our results indicate the beneficial effects of genistein and exercise training on HFHS-induced brain damage. The benefits of genistein may occur via estrogen receptor-mediated pathways.


Subject(s)
Brain Injuries , Genistein , Amyloid beta-Peptides , Animals , Brain , Brain-Derived Neurotrophic Factor , Diet, High-Fat/adverse effects , Female , Genistein/pharmacology , Genistein/therapeutic use , Mice , Mice, Inbred C57BL , Rats , Sucrose , Tamoxifen
11.
J Food Biochem ; 46(7): e14155, 2022 07.
Article in English | MEDLINE | ID: mdl-35460092

ABSTRACT

Neurodegenerative diseases are caused by the progressive loss of function or structure of nerve cells in the central nervous system. The most common neurodegenerative diseases include Alzheimer's disease, Huntington's disease, motor neuron disease, and Parkinson's disease. Although the physical or mental symptoms of neurodegenerative disease may be relieved by various treatment combinations, there are currently no strategies to directly slow or prevent neurodegeneration. Given the demographic evidence of a rapidly growing aging population and the associated prevalence of these common neurodegenerative diseases, it is paramount to develop safe and effective ways to protect against neurodegenerative diseases. Most neurodegenerative diseases share some common etiologies such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. Genistein is an isoflavone found in soy products that have been shown to exhibit antioxidant, anti-inflammation, and estrogenic properties. Increasing evidence indicates the protective potential of genistein in neurodegenerative disorders. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disease. PRACTICAL APPLICATIONS: Genistein is a naturally occurring isoflavone found mainly in soybean, but also green peas, legumes, and peanuts. Genistein is found to pass through the blood-brain barrier and possess a neuroprotective effect. In this review, we discuss studies in support of these actions and the underlying biological mechanisms. Together, these data indicate that genistein may hold neuroprotective effects in either delaying the onset or relieving the symptoms of neurodegenerative disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Antioxidants , Genistein/pharmacology , Neurodegenerative Diseases/drug therapy , Oxidative Stress , Glycine max
12.
Molecules ; 26(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833964

ABSTRACT

Carnitine insufficiency is reported in type 1 diabetes mellitus. To determine whether this is accompanied by defects in biosynthesis and/or renal uptake, liver and kidney were obtained from male Sprague-Dawley rats with streptozotocin-induced diabetes. Diabetic rats exhibited the metabolic consequences of type 1 diabetes, including hypoinsulinemia, hyperglycemia, and increased urine output. Systemic hypocarnitinemia, expressed as free carnitine levels, was evident in the plasma, liver, and kidney of diabetic rats. Compared to control rats, the low free carnitine in the plasma of diabetic rats was accompanied by decreased expression of γ-butyrobetaine hydroxylase in liver and kidney, suggesting impaired carnitine biosynthesis. Expression of organic cation transporter-2 in kidney was also reduced, indicating impaired renal reabsorption, and confirmed by the presence of elevated levels of free carnitine in the urine of diabetic rats. Insulin treatment of diabetic rats reversed the plasma hypocarnitinemia, increased the free carnitine content in both kidney and liver, and prevented urinary losses of free carnitine. This was associated with increased expression of γ-butyrobetaine hydroxylase and organic cation transporter-2. The results of our study indicate that type 1 diabetes induced with streptozotocin disrupts carnitine biosynthesis and renal uptake mechanisms, leading to carnitine insufficiency. These aberrations in carnitine homeostasis are prevented with daily insulin treatment.


Subject(s)
Carnitine/metabolism , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Male , Rats, Sprague-Dawley , Renal Elimination
13.
Water Environ Res ; 94(1): e1684, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35083816

ABSTRACT

Although aluminum- and iron-based chemicals have been broadly used as the two most common types of coagulants for wastewater treatment, their impacts on the performance of downstream sludge management can be quite different and have not been well understood. This work reviewed and analyzed their similarities and differences in the context of the anaerobic digestion performance, dewaterability of digested sludge, and odor emission from dewatered biosolids. In short, iron-based coagulants tend to show less negative impact than aluminum-based coagulants. This can be attributed to the reduction of ferric to ferrous ions in the course of anaerobic digestion, which leads to a suite of changes in protein bioavailability, alkalinity and hydrogen sulfide levels, and in turn the sludge dewaterability and odor potential. Whether these observations still hold true in the context of thermally hydrolyzed sludge management remains to be studied. PRACTITIONER POINTS: The impacts of aluminum-/iron-based coagulant addition on municipal sludge anaerobic digestibility, dewaterability, and odor emission are reviewed. Iron-based coagulants show less negative impact on the sludge digestibility than aluminum-based coagulants. Conclusions may aid practitioners in selecting coagulants in practice and better understanding the mechanisms behind the phenomena.

14.
Int J Mol Sci ; 21(19)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020412

ABSTRACT

To date, there is no cure or effective treatment for Alzheimer's disease (AD), a chronic neurodegenerative condition that affects memory, language, and behavior. AD is characterized by neuroinflammation, accumulation of brain amyloid-beta (Aß) oligomers and neurofibrillary tangles, increased neuronal apoptosis, and loss of synaptic function. Promoting regular exercise and a diet containing polyphenols are effective non-pharmacological approaches that prevent the progression of neurodegenerative diseases. In this study, we measured various conformational toxic species of Aß and markers of inflammation, apoptosis, endolysosomal degradation, and neuroprotection after 5 months of exercise training (ET), resveratrol (Resv) treatment, or combination treatment in the 3xTg-AD mouse model of AD. Our main results indicate that Resv decreased neuroinflammation and accumulation of Aß oligomers, increased levels of neurotrophins, synaptic markers, silent information regulator, and decreased markers of apoptosis, autophagy, endolysosomal degradation and ubiquitination in the brains of 3xTg-AD mice. ET improved some markers related to neuroprotection, but when combined with Resv treatment, the benefits achieved were as effective as Resv treatment alone. Our results show that the neuroprotective effects of Resv, ET or Resv and ET are associated with reduced toxicity of Aß oligomers, suppression of neuronal autophagy, decreased apoptosis, and upregulation of key growth-related proteins.


Subject(s)
Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Physical Conditioning, Animal , Resveratrol/pharmacology , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Animals , Disease Models, Animal , Exercise/physiology , Humans , Mice
15.
Front Psychol ; 11: 2139, 2020.
Article in English | MEDLINE | ID: mdl-32982875

ABSTRACT

The beneficial effects of oxytocin on infarct size and functional recovery of the ischemic reperfused heart are well documented. The mechanisms for this cardioprotection are not well defined. Evidence indicates that oxytocin treatment improves cardiac work, reduces apoptosis and inflammation, and increases scar vascularization. Oxytocin-mediated cytoprotection involves the production of cGMP stimulated by local release of atrial natriuretic peptide and synthesis of nitric oxide. Treatment with oxytocin reduces the expression of proinflammatory cytokines and reduces immune cell infiltration. Oxytocin also stimulates differentiation stem cells to cardiomyocyte lineages as well as generation of endothelial and smooth muscle cells, promoting angiogenesis. The beneficial actions of oxytocin may include the increase in glucose uptake by cardiomyocytes, reduction in cardiomyocyte hypertrophy, decrease in oxidative stress, and mitochondrial protection of several cell types. In cardiac and cellular models of ischemia and reperfusion, acute administration of oxytocin at the onset of reperfusion enhances cardiomyocyte viability and function by activating Pi3K and Akt phosphorylation and downstream cellular signaling. Reperfusion injury salvage kinase and signal transducer and activator of transcription proteins cardioprotective pathways are involved. Oxytocin is cardioprotective by reducing the inflammatory response and improving cardiovascular and metabolic function. Because of its pleiotropic nature, this peptide demonstrates a clear potential for the treatment of cardiovascular pathologies. In this review, we discuss the possible cellular mechanisms of action of oxytocin involved in cardioprotection.

16.
Drug Des Devel Ther ; 14: 3325-3336, 2020.
Article in English | MEDLINE | ID: mdl-32884237

ABSTRACT

PURPOSE: Diabetes mellitus (DM)-induced brain damage is characterized by cellular, molecular and functional changes. The mechanisms include oxidative stress, neuroinflammation, reduction of neurotrophic factors, insulin resistance, excessive amyloid beta (Aß) deposition and Tau phosphorylation. Both antidiabetic and neuroprotective effects of the phytoestrogen genistein have been reported. However, the beneficial effect of genistein in brain of the ob/ob mouse model of severe obesity and diabetes remains to be determined. METHODS: In this study, female ob/ob mice and lean control mice were fed with either a standard diet or a diet containing genistein (600mg/kg) for a period of 4 weeks. Body weight was monitored weekly. Blood was collected for the measurement of glucose, insulin and common cytokines. Mice brains were isolated for Western immunoblotting analyses. RESULTS: Treatment with genistein reduced weight gain of ob/ob mice and decreased hyperglycemia compared to ob/ob mice fed the standard diet. The main findings show that genistein treatment increased insulin sensitivity and the expression levels of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factors (BDNF). In these mice, genistein also reduced Aß deposition and the level of hyper-phosphorylated Tau protein. CONCLUSION: The results of our study indicate the beneficial effects of genistein in the obese diabetic mouse brain, including improving brain insulin signaling, increasing neurotrophic support, and alleviating Alzheimer's disease-related pathology.


Subject(s)
Brain/drug effects , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Genistein/pharmacology , Neuroprotective Agents/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Brain/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diet , Female , Genistein/administration & dosage , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/pathology , Mice , Mice, Inbred C57BL , Mice, Obese , Neuroprotective Agents/administration & dosage , Weight Gain/drug effects
17.
Molecules ; 25(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365864

ABSTRACT

(1) Background: Diet-induced obesity inhibits hepatic carnitine biosynthesis. Herein, the effects of high-fat (HF) and high-sugar (HFHS) feeding and exercise training (ET) on renal carnitine biosynthesis and uptake were determined. (2) Methods: Male C57BL/6J mice were assigned to the following groups: lean control (standard chow), HFHS diet, and HFHS diet with ET. ET consisted of 150 min of treadmill running per week for 12 weeks. Protein levels of γ-butyrobetaine hydroxylase (γ-BBH) and organic cation transporter-2 (OCTN2) were measured as markers of biosynthesis and uptake, respectively. (3) Results: HFHS feeding induced an obese diabetic state with accompanying hypocarnitinemia, reflected by decreased free carnitine levels in plasma and kidney. This hypocarnitinemia was associated with decreased γ-BBH (~30%) and increased OCTN2 levels (~50%). ET failed to improve the obesity and hyperglycemia, but improved insulin levels and prevented the hypocarnitinemia. ET increased protein levels of γ-BBH, whereas levels of OCTN2 were decreased. Peroxisome proliferator-activated receptor-alpha content was not changed by the HFHS diet or ET. (4) Conclusions: Our results indicate that ET prevents the hypocarnitinemia induced by HFHS feeding by increasing carnitine biosynthesis in kidney. Increased expression of OCTN2 with HFHS feeding suggests that renal uptake was stimulated to prevent carnitine loss.


Subject(s)
Carnitine/metabolism , Diet, Carbohydrate Loading , Diet, High-Fat , Kidney/metabolism , Physical Conditioning, Animal , Animals , Biomarkers , Carnitine/biosynthesis , Male , Mice , Organ Size , Sugars
18.
Curr Dev Nutr ; 3(11): nzz121, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31750414

ABSTRACT

BACKGROUND: High caloric intake of saturated fat and refined sugars accelerates the development of obesity and diabetes and increases bone fracture risk. Some evidence suggests that consumption of a diet rich in phytoestrogens like genistein has the potential to strengthen bone biomechanical properties. Its bone-strengthening properties may mitigate fracture risk associated with metabolic conditions like obesity and diabetes, especially when combined with exercise. OBJECTIVE: In this study, we test the effects of genistein, exercise training, and combination treatment on biomechanical properties of cortical bone in mice fed a high-fat, high-sugar (HFHS) diet. METHODS: Eighty C67BL6 mice (40 females, 40 males) aged 6 wk were treated for 12 wk with an HFHS diet containing 60% fat and drinking water with 4.2 g/L sugar (55% sucrose, 45% fructose). Subgroups of the mice were also treated with genistein and/or moderate exercise (treadmill running). Genistein was incorporated into the HFHS diet (600 mg genistein/kg HFHS) and exercise was performed daily for 30 min, 5 d/wk (n = 10 females, 10 males per group). Three-point bending mechanical testing and quantitative fluorescence microscopy were conducted on femurs to measure bone strength and matrix quality. RESULTS: Mechanical testing revealed HFHS-fed mice treated with genistein, either alone or combined with exercise, had femurs that exhibited increased postyield displacement and reduced stiffness during 3-point bending in comparison with mice only treated with the HFHS diet. Femurs of genistein-treated mice also exhibited greater ultimate force required to achieve fracture. Quantitative fluorescence showed genistein reduced advanced glycation end product accumulation in bone matrix. Exercise treatment alone had no effect. CONCLUSIONS: Treatment with genistein, either alone or in combination with exercise, improves fracture resistance in mice fed an HFHS diet by improving bone matrix quality and increasing bone strength.

19.
PLoS One ; 14(7): e0219205, 2019.
Article in English | MEDLINE | ID: mdl-31269062

ABSTRACT

In the rat, oxytocin (OT) produces dose-dependent diuretic and natriuretic responses. Post-translational enzymatic conversion of the OT biosynthetic precursor forms both mature and C-terminally extended peptides. The plasma concentrations of these C-terminally extended peptides (OT-G; OT-GK and OT-GKR) are elevated in newborns and pregnant rats. Intravenous injection of OT-GKR to rats inhibits diuresis, whereas injection of amidated OT stimulates diuresis. Since OT and OT-GKR show different effects on the urine flow, we investigated whether OT-GKR modulates renal action by inhibition of the arginine-vasopressin (AVP) receptor V2 (V2R), the receptor involved in renal water reabsorption. Experiments were carried out in the 8-week-old Wistar rats receiving intravenous (iv) injections of vehicle, OT, OT-GKR or OT+OT-GKR combination. OT (10 µmol/kg) increased urine outflow by 40% (P<0.01) and sodium excretion by 47% (P<0.01). Treatment with OT-GKR (10 µmol/kg) decreased diuresis by 50% (P<0.001), decreased sodium excretion by 50% (P<0.05) and lowered potassium by 42% (P<0.05). OT antagonist (OTA) reduced diuresis and natriuresis exerted by OT, whereas the anti-diuretic effect of OT-GKR was unaffected by OTA. The treatment with V2R antagonist (V2A) in the presence and absence of OT induced diuresis, sodium and potassium outflow. V2A in the presence of OT-GKR only partially increased diuresis and natriuresis. Autoradiography and molecular docking analysis showed potent binding of OT-GKR to V2R. Finally, the release of cAMP from CHO cells overexpressing V2 receptor was induced by low concentration of AVP (EC50:4.2e-011), at higher concentrations of OT (EC50:3.2e-010) and by the highest concentrations of OT-GKR (EC50:1.1e-006). OT-GKR potentiated cAMP release when combined with AVP, but blocked cAMP release when combined with OT. These results suggest that OT-GKR by competing for the OT renal receptor (OTR) and binding to V2R in the kidney, induces anti-diuretic, anti-natriuretic, and anti-kaliuretic effects.


Subject(s)
Diuresis , Natriuresis , Oxytocin/metabolism , Animals , Autoradiography , Binding, Competitive , CHO Cells , Cell Line , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Electrolytes/metabolism , Humans , Kidney/metabolism , Molecular Docking Simulation , Peptides/metabolism , Rats , Rats, Wistar , Receptors, Vasopressin/metabolism , Urination , Vasopressins/metabolism
20.
Drug Des Devel Ther ; 13: 1197-1211, 2019.
Article in English | MEDLINE | ID: mdl-31114160

ABSTRACT

Background: Studies have indicated an association between Alzheimer's disease (AD) and increased risk of developing cardiovascular complications. Lifestyle modifiable factors, such as exercise and diet, are known to prevent cardio-cerebral disease. Recent studies demonstrate that hearts from early onset triple-transgenic AD mice exhibit pathologies, but it is not clear whether cardiovascular function is altered in this model. Methods: In this study, we measured in vivo cardiovascular function in 7-month-old male 3xTg mice and age-matched wild-type (WT) mice using high-frequency high-resolution ultrasound imaging. Results: Our findings indicated that aortic root measurements and interventricular septal dimensions were similar in 3xTg and wild-type mice. Systolic function, expressed as ejection fraction and fractional shortening, were decreased in 3xTg mice. Late (A) ventricular filling velocities, the early/atrial (E/A) ratio, and mitral valve deceleration time, all indices of diastolic function, were increased in 3xTg mice compared to WT mice. Treadmill exercise training and resveratrol supplementation in the diet for 5 months improved ejection fraction, fractional shortening, and restored diastolic deceleration times. Pulse wave velocity was ~33% higher in 3xTg, and accompanied by a significant increase in elastin fiber fragmentation within the aortic wall, which was associated with decrease in elastin content and fiber length. Aortic wall and adventitia thickness were increased in 3xTg mice compared to the WT group. Exercise training and resveratrol supplementation, or both, improved overall aortic morphology with no change in pulse wave velocity. Conclusion: Taken together, the results indicate that the aberrations in cardiac function and aortic elastin morphology observed in the 3xTg mouse model of AD can be prevented with exercise training and treatment with resveratrol. The benefits of regular exercise training and resveratrol supplementation of heart and aortic structure in the 3xTg mouse support the value of healthy lifestyle factors on cardiovascular health.


Subject(s)
Alzheimer Disease/drug therapy , Aortic Valve/drug effects , Cardiovascular Diseases/drug therapy , Disease Models, Animal , Physical Conditioning, Animal , Resveratrol/pharmacology , Alzheimer Disease/metabolism , Animals , Aortic Valve/metabolism , Cardiovascular Diseases/metabolism , Dietary Supplements , Male , Mice , Mice, Transgenic , Pulse Wave Analysis , Resveratrol/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...