Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Diagn ; 24(11): 1160-1170, 2022 11.
Article in English | MEDLINE | ID: mdl-36115511

ABSTRACT

Genome-wide copy number profiling by single-nucleotide polymorphism (SNP) array is increasingly employed in the clinical diagnostic workup of melanocytic tumors. We present our SNP array results on 675 melanocytic tumors, including 615 histologically ambiguous tumors evaluated by our institution's dermatopathology consultation service and a separate validation cohort of 26 known benign nevi and 34 known malignant melanomas. The total number of somatic copy number abnormalities, sub-chromosomal copy number abnormalities, regions of homozygosity, and abnormalities at disease-associated regions was significantly associated with a diagnosis of malignancy across disease categories. In our study, the number of copy number abnormalities was the factor that best discriminated between benign versus malignant diagnoses, confirming recent published research. Histologically ambiguous tumors had a range and spectrum of abnormalities, including recurrent 11p gains, copy state transitions over kinase genes, and 3p deletions overlapping BAP1 in neoplasms with Spitzoid morphology. Our data suggest that histologically ambiguous melanocytic neoplasms and early primary melanomas have a range of abnormalities that is intermediate between unambiguous benign or malignant melanocytic neoplasms. Careful technical review and an integrated diagnostic approach are essential for the accurate interpretation of SNP array results on histologically ambiguous melanocytic tumors.


Subject(s)
Melanoma , Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Humans , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Polymorphism, Single Nucleotide , Melanoma/diagnosis , Melanoma/genetics , Chromosome Aberrations
2.
Am J Med Genet A ; 164A(10): 2514-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24975781

ABSTRACT

Deletion of 15q11.2-q13 results in either Prader-Willi syndrome (PWS) or Angelman syndrome (AS) depending on the parent of origin. Duplication of the PWS/AS critical region (PWASCR) has also been reported in association with developmental delay and autism, and it has been shown that they also show a parent-of-origin effect. It is generally accepted that maternal duplications are pathogenic. However, there is conflicting evidence as to the pathogenicity of paternal duplications. We have identified 35 patients with gain of the PWASCR using array comparative genomic hybridization. Methylation testing was performed to determine parent of origin of the extra copies. Of the 35 cases, 22 had a supernumerary marker chromosome 15 (SMC15), 12 had a tandem duplication, and 1 had a tandem triplication. Only one patient had a paternal duplication; this patient does not have features typical of patients with maternal duplication of the PWASCR. Three of the mothers had a tandem duplication (two were paternal and one was maternal origin). While one of the two mothers with paternal duplication was noted not to have autism, the other was noted to have learning disability and depression. Based on our data, we conclude that SMC15 are almost exclusively maternal in origin and result in an abnormal phenotype. Tandem duplications/triplications are generally of maternal origin when ascertained on the basis of abnormal phenotype; however, tandem duplications of paternal origin have also been identified. Therefore, we suggest that methylation testing be performed for cases of tandem duplications/triplications since the pathogenicity of paternal gains is uncertain.


Subject(s)
Angelman Syndrome/genetics , DNA Methylation/genetics , Gene Dosage/genetics , Gene Duplication/genetics , Prader-Willi Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Duplication/genetics , Chromosomes, Human, Pair 15/genetics , Developmental Disabilities/genetics , Female , Humans , Infant , Infant, Newborn , Male , Parents , Phenotype , Sequence Deletion/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL