Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 17(12): 4463-4472, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32835489

ABSTRACT

Amorphous solid dispersions (ASDs) can increase the bioavailability of drugs with poor aqueous solubility. However, concentration-sustaining dispersion polymers (CSPs) incorporated in ASDs can result in low drug loading and, therefore, a large dosage-form size or multiple units to meet dose requirements, potentially decreasing patient compliance. To address this challenge, a high-loaded dosage-form (HLDF) architecture for ASDs was developed, in which a drug is first spray-dried with a high glass-transition temperature (Tg) dispersion polymer to facilitate high drug loading while maintaining physical stability. The ASD is then granulated with a CSP designed to extend supersaturation in solution. The HLDF differs from traditional ASD architectures in which the dispersion polymer inside the ASD acts as the CSP. By strategically combining two different polymers, one "inside" and one "outside" the ASD, solubilization performance, physical stability, and overall drug loading are maximized. This study demonstrates in vivo performance of the HLDF architecture using posaconazole as a model drug. Two sizes of HLDF tablets were tested in beagle dogs, along with traditional ASD architecture (benchmark) tablets, ASD tablets without a CSP, and a commercial crystalline oral suspension (Noxafil OS). HLDF tablets performed equivalently to the benchmark tablets, the smaller HLDF tablet being 40% smaller (by mass) than the benchmark tablet. The HLDF tablets doubled the blood plasma AUC relative to Noxafil OS. In line with the in vivo outcome, in vitro results in a multicompartment dissolution apparatus demonstrated similar area under the curve (AUC) values in the intestinal compartment for ASD tablets. However, the in vitro data underpredicted the relative in vivo AUC of Noxafil OS compared to the ASD tablets. This study demonstrated that the HLDF approach can increase drug loadings while achieving good performance for ASD drug products.


Subject(s)
Antifungal Agents/pharmacokinetics , Drug Compounding/methods , Triazoles/pharmacokinetics , Administration, Oral , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Area Under Curve , Biological Availability , Crystallization , Dogs , Drug Liberation , Models, Animal , Solubility , Spray Drying , Suspensions , Tablets , Triazoles/administration & dosage , Triazoles/chemistry
2.
Mol Pharm ; 14(7): 2437-2449, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28591516

ABSTRACT

Improving the oral absorption of compounds with low aqueous solubility is a common challenge that often requires an enabling technology. Frequently, oral absorption can be improved by formulating the compound as an amorphous solid dispersion (ASD). Upon dissolution, an ASD can reach a higher concentration of unbound drug than the crystalline form, and often generates a large number of sub-micrometer, rapidly dissolving drug-rich colloids. These drug-rich colloids have the potential to decrease the diffusional resistance across the unstirred water layer of the intestinal tract (UWL) by acting as rapidly diffusing shuttles for unbound drug. In a prior study utilizing a membrane flux assay, we demonstrated that, for itraconazole, increasing the concentration of drug-rich colloids increased membrane flux in vitro. In this study, we evaluate spray-dried amorphous solid dispersions (SDDs) of itraconazole with hydroxypropyl methylcellulose acetate succinate (HPMCAS) to study the impact of varying concentrations of drug-rich colloids on the oral absorption of itraconazole in rats, and to quantify their impact on in vitro flux as a function of bile salt concentration. When Sporanox and itraconazole/AFFINISOL High Productivity HPMCAS SDDs were dosed in rats, the maximum absorption rate for each formulation rank-ordered with membrane flux in vitro. The relative maximum absorption rate in vivo correlated well with the in vitro flux measured in 2% SIF (26.8 mM bile acid concentration), a representative bile acid concentration for rats. In vitro it was found that as the bile salt concentration increases, the importance of colloids for improving UWL permeability is diminished. We demonstrate that drug-containing micelles and colloids both contribute to aqueous boundary layer diffusion in proportion to their diffusion coefficient and drug loading. These data suggest that, for compounds with very low aqueous solubility and high epithelial permeability, designing amorphous formulations that produce colloids on dissolution may be a viable approach to improve oral bioavailability.


Subject(s)
Colloids/chemistry , Itraconazole/chemistry , Methylcellulose/analogs & derivatives , Animals , Calorimetry, Differential Scanning , Male , Methylcellulose/chemistry , Micelles , Rats , Rats, Sprague-Dawley
3.
Appl Environ Microbiol ; 71(6): 3184-91, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15933020

ABSTRACT

The purpose of this study was to examine host distribution patterns among fecal bacteria in the order Bacteroidales, with the goal of using endemic sequences as markers for fecal source identification in aquatic environments. We analyzed Bacteroidales 16S rRNA gene sequences from the feces of eight hosts: human, bovine, pig, horse, dog, cat, gull, and elk. Recovered sequences did not match database sequences, indicating high levels of uncultivated diversity. The analysis revealed both endemic and cosmopolitan distributions among the eight hosts. Ruminant, pig, and horse sequences tended to form host- or host group-specific clusters in a phylogenetic tree, while human, dog, cat, and gull sequences clustered together almost exclusively. Many of the human, dog, cat, and gull sequences fell within a large branch containing cultivated species from the genus Bacteroides. Most of the cultivated Bacteroides species had very close matches with multiple hosts and thus may not be useful targets for fecal source identification. A large branch containing cultivated members of the genus Prevotella included cloned sequences that were not closely related to cultivated Prevotella species. Most ruminant sequences formed clusters separate from the branches containing Bacteroides and Prevotella species. Host-specific sequences were identified for pigs and horses and were used to design PCR primers to identify pig and horse sources of fecal pollution in water. The primers successfully amplified fecal DNAs from their target hosts and did not amplify fecal DNAs from other species. Fecal bacteria endemic to the host species may result from evolution in different types of digestive systems.


Subject(s)
Bacteroidetes/isolation & purification , Feces/microbiology , Genetic Markers , Water Pollutants/analysis , Animals , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/growth & development , Cats , Cattle , DNA Primers , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Dogs , Humans , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
4.
Environ Monit Assess ; 81(1-3): 313-26, 2003.
Article in English | MEDLINE | ID: mdl-12620024

ABSTRACT

Molecular methods are useful both to monitor natural communities of bacteria, and to track specific bacterial markers in complex environments. Length-heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) of 16S rDNAs discriminate among 16S rRNA genes based on length polymorphisms of their PCR products. With these methods, we developed an alternative indicator that distinguishes the source of fecal pollution in water. We amplify 16S rRNA gene fragments from the fecal anaerobic genus Bacteroides with specific primers. Because Bacteroides normally resides in gut habitats, its presence in water indicates fecal pollution. Molecular detection circumvents the complexities of growing anaerobic bacteria. We identified Bacteroides LH-PCR and T-RFLP ribosomal DNA markers unique to either ruminant or human feces. The same unique fecal markers were recovered from polluted natural waters. We cloned and sequenced the unique markers; marker sequences were used to design specific PCR primers that reliably distinguish human from ruminant sources of fecal contamination. Primers for more species are under development. This approach is more sensitive than fecal coliform assays, is comparable in complexity to standard food safety and public health diagnostic tests, and lends itself to automation and high-throughput. Thus molecular genetic markers for fecal anaerobic bacteria hold promise for monitoring bacterial pollution and water quality.


Subject(s)
DNA, Bacterial/analysis , Feces/microbiology , Genetic Markers , RNA, Ribosomal, 16S/genetics , Water Microbiology , Environmental Monitoring/methods , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sensitivity and Specificity , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...