Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 72(12): 4457-4470, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796299

ABSTRACT

BACKGROUND: The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS: The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION: Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Animals , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Dependovirus/genetics , X-Ray Microtomography , Tumor Suppressor Protein p53 , Containment of Biohazards , Disease Models, Animal , Genetic Vectors/genetics
2.
Methods Mol Biol ; 1745: 67-82, 2018.
Article in English | MEDLINE | ID: mdl-29476463

ABSTRACT

Mass cytometry (cytometry by time-of-flight, CyTOF) is a high-dimensional single-cell analytical technology that allows for highly multiplexed measurements of protein or nucleic acid abundances by bringing together the detection capacity of atomic mass spectroscopy and the sample preparation workflow typical of regular flow cytometry. In 2014 the mass cytometer was adapted for the acquisition of samples from microscopy slides (termed imaging mass cytometry), greatly increasing the applicability of this technology with the inclusion of spatial information. By using antibodies (or other probes) labeled with purified metal isotopes, mass cytometers are currently able to detect more than 50 different parameters at a single-cell level, exceeding the dimensionality of any other flow cytometry methodology currently on the market. This capability licenses unprecedented possibilities in many areas dealing with complex cellular mixtures (immunology, cell biology, and beyond), improving biomarker discovery and moving us closer to affordable personalized medicine than before.


Subject(s)
Flow Cytometry/methods , Immunophenotyping/methods , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Biomarkers , Cell Culture Techniques , Cell Separation , Data Analysis , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Single-Cell Analysis
3.
Curr Protoc Immunol ; 118: 5.11.1-5.11.25, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28762483

ABSTRACT

Mass cytometry is an analytical technology that combines the sample preparation workflow typical of flow cytometry and the detection capacity of atomic mass spectroscopy, allowing for highly multiplexed measurements of protein or nucleic acid targets on single cells. In 2014, the mass cytometer was adapted for the acquisition of samples from microscopy slides (termed imaging mass cytometry), greatly increasing the applicability of this technology. By using antibodies (or other probes) labeled with purified metal isotopes, the mass cytometer is able to detect up to 50 different parameters (current practical limit) at the single-cell level, enabling a deep and thorough profiling of individual cells in terms of their cell surface protein phenotype, physiological state, proliferation potential, and many other cell states or features. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Flow Cytometry/methods , Single-Cell Analysis/methods , Antibodies/immunology , Cytokines/immunology , Flow Cytometry/instrumentation , Humans , Immunophenotyping , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Single-Cell Analysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL