Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38261971

ABSTRACT

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Subject(s)
Cell Cycle Proteins , Proliferating Cell Nuclear Antigen , Schizosaccharomyces pombe Proteins , Binding Sites , DNA Replication , Intrinsically Disordered Proteins/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Ribonucleotide Reductases/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism
2.
Mol Microbiol ; 116(2): 397-415, 2021 08.
Article in English | MEDLINE | ID: mdl-33756056

ABSTRACT

Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.


Subject(s)
Bacteriophages/metabolism , Endopeptidases/metabolism , Peptidoglycan/metabolism , Rhamnose/metabolism , Streptococcus pyogenes/virology , Bacteriophages/genetics , Binding Sites/physiology , Cell Membrane/metabolism , Cell Wall/metabolism , Endopeptidases/genetics , Molecular Docking Simulation , Protein Binding/physiology , Streptococcus pyogenes/metabolism
3.
J Biol Chem ; 296: 100447, 2021.
Article in English | MEDLINE | ID: mdl-33617878

ABSTRACT

The fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold, which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyperstable monobody derivative with diagnostic and therapeutic potential. Prestabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain toward biological activity. Here, we aimed to examine if the FN3Con monobody could take on antibody-like binding to therapeutic targets, while retaining its extreme stability. We targeted the first of the Adnectin derivative of monobodies to reach clinical trials, which was engineered by directed evolution for binding to the therapeutic target VEGFR2; however, this function was gained at the expense of large losses in thermostability and increased oligomerization. In order to mitigate these losses, we grafted the binding loops from Adnectin-anti-VEGFR2 (CT-322) onto the prestabilized FN3Con scaffold to produce a domain that successfully bound with high affinity to the therapeutic target VEGFR2. This FN3Con-anti-VEGFR2 construct also maintains high thermostability, including remarkable long-term stability, retaining binding activity after 2 years of storage at 36 °C. Further investigations into buffer excipients doubled the presence of monomeric monobody in accelerated stability trials. These data suggest that loop grafting onto a prestabilized scaffold is a viable strategy for the development of monobody domains with desirable biophysical characteristics and that FN3Con is therefore well-suited to applications such as the evolution of multiple paratopes or shelf-stable diagnostics and therapeutics.


Subject(s)
Antibodies/metabolism , Fibronectin Type III Domain/genetics , Antibodies/immunology , Fibronectin Type III Domain/immunology , Fibronectins/genetics , Fibronectins/immunology , Fibronectins/metabolism , Genetic Engineering/methods , Humans , Matrix Attachment Regions , Mutation , Peptide Fragments/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , Protein Binding/genetics , Protein Binding/immunology , Vascular Endothelial Growth Factor Receptor-2/immunology , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Methods Mol Biol ; 2073: 163-181, 2020.
Article in English | MEDLINE | ID: mdl-31612442

ABSTRACT

The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.


Subject(s)
Computational Biology/methods , Evolution, Molecular , Protein Engineering/methods , Phylogeny , Protein Stability
5.
Cell Mol Life Sci ; 76(24): 4923-4943, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31134302

ABSTRACT

Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.


Subject(s)
Amino Acid Motifs/genetics , DNA-Binding Proteins/chemistry , DNA/chemistry , Proliferating Cell Nuclear Antigen/chemistry , DNA/genetics , DNA Repair/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Magnetic Resonance Spectroscopy , Proliferating Cell Nuclear Antigen/genetics , Protein Conformation
6.
Mol Microbiol ; 110(6): 879-896, 2018 12.
Article in English | MEDLINE | ID: mdl-30230642

ABSTRACT

Bacteriophage-encoded endolysins can recognize and bind specific bacteria, and act to cleave the glycosidic and/or amide bonds in the peptidoglycan (PG) bacterial cell wall. Cleavage of the cell wall generally results in the death of the bacteria. Their utility as bacteriolytic agents could be exploited for human and veterinary medicines as well as various biotechnological applications. As interest grows in the commercial uses of these proteins, there has been much effort to successfully employ rational design and engineering to produce endolysins with bespoke properties. In this review, we interrogate the current structural data and identify structural features that would be of benefit to engineering the activity and specificity of phage endolysins. We show that the growing body of structural data can be used to predict catalytic residues and mechanism of action from sequences of hypothetical endolysins, and probe the importance of secondary structure repeats in bacterial cell wall-binding domains.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteriophages/enzymology , Biocatalysis , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Viral Proteins/chemistry , Bacteriolysis , Cell Wall/metabolism , Computer Simulation , Kinetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Protein Binding , Protein Domains , Protein Structure, Quaternary , Substrate Specificity
7.
PLoS One ; 10(10): e0140219, 2015.
Article in English | MEDLINE | ID: mdl-26470022

ABSTRACT

The growing problem of antibiotic resistance underlies the critical need to develop new treatments to prevent and control resistant bacterial infection. Exogenous application of bacteriophage lysins results in rapid and specific destruction of Gram-positive bacteria and therefore lysins represent novel antibacterial agents. The PlyC phage lysin is the most potent lysin characterized to date and can rapidly lyse Group A, C and E streptococci. Previously, we have determined the X-ray crystal structure of PlyC, revealing a complicated and unique arrangement of nine proteins. The scaffold features a multimeric cell-wall docking assembly bound to two catalytic domains that communicate and work synergistically. However, the crystal structure appeared to be auto-inhibited and raised important questions as to the mechanism underlying its extreme potency. Here we use small angle X-ray scattering (SAXS) and reveal that the conformational ensemble of PlyC in solution is different to that in the crystal structure. We also investigated the flexibility of the enzyme using both normal mode (NM) analysis and molecular dynamics (MD) simulations. Consistent with our SAXS data, MD simulations show rotational dynamics of both catalytic domains, and implicate inter-domain communication in achieving a substrate-ready conformation required for enzyme function. Our studies therefore provide insights into how the domains in the PlyC holoenzyme may act together to achieve its extraordinary potency.


Subject(s)
Bacteriophages/enzymology , Enzymes/chemistry , Streptococcus/virology , Bacteriophages/chemistry , Catalytic Domain , Crystallography, X-Ray/methods , Enzymes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Structure, Quaternary , Protein Structure, Secondary , Scattering, Small Angle
8.
J Cell Sci ; 127(Pt 11): 2460-70, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24652833

ABSTRACT

In yeasts, small intrinsically disordered proteins (IDPs) modulate ribonucleotide reductase (RNR) activity to ensure an optimal supply of dNTPs for DNA synthesis. The Schizosaccharomyces pombe Spd1 protein can directly inhibit the large RNR subunit (R1), import the small subunit (R2) into the nucleus and induce an architectural change in the R1-R2 holocomplex. Here, we report the characterization of Spd2, a protein with sequence similarity to Spd1. We show that Spd2 is a CRL4(Cdt2)-controlled IDP that functions together with Spd1 in the DNA damage response and in modulation of RNR architecture. However, Spd2 does not regulate dNTP pools and R2 nuclear import. Furthermore, deletion of spd2 only weakly suppresses the Rad3(ATR) checkpoint dependency of CRL4(Cdt2) mutants. However, when we raised intracellular dNTP pools by inactivation of RNR feedback inhibition, deletion of spd2 could suppress the checkpoint dependency of CRL4(Cdt2) mutant cells to the same extent as deletion of spd1. Collectively, these observations suggest that Spd1 on its own regulates dNTP pools, whereas in combination with Spd2 it modulates RNR architecture and sensitizes cells to DNA damage.


Subject(s)
Cell Cycle Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Ribonucleotide Reductases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Allosteric Regulation/genetics , Amino Acid Sequence , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/isolation & purification , Checkpoint Kinase 2/metabolism , DNA Repair/genetics , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/isolation & purification , Molecular Sequence Data , Mutation/genetics , Nucleotidases/metabolism , Protein Conformation , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/isolation & purification , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...