Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Antimicrob Agents Chemother ; 68(3): e0121023, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38319076

ABSTRACT

Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Thiazoles , Triterpenes , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Drug Repositioning , NF-E2-Related Factor 2/metabolism , Coronavirus 229E, Human/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
FASEB J ; 37(12): e23279, 2023 12.
Article in English | MEDLINE | ID: mdl-37902583

ABSTRACT

The pathogenicity elicited by Staphylococcus (S.) aureus, one of the best-studied bacteria, in the intestine is not well understood. Recently, we demonstrated that S. aureus infection induces alterations in membrane composition that are associated with concomitant impairment of intestinal function. Here, we used two organoid models, induced pluripotent stem cell (iPSC)-derived intestinal organoids and colonic intestinal stem cell-derived intestinal organoids (colonoids), to examine how sterol metabolism and oxygen levels change in response to S. aureus infection. HPLC quantification showed differences in lipid homeostasis between infected and uninfected cells, characterized by a remarkable decrease in total cellular cholesterol. As the altered sterol metabolism is often due to oxidative stress response, we next examined intracellular and extracellular oxygen levels. Three different approaches to oxygen measurement were applied: (1) cell-penetrating nanoparticles to quantify intracellular oxygen content, (2) sensor plates to quantify extracellular oxygen content in the medium, and (3) a sensor foil system for oxygen distribution in organoid cultures. The data revealed significant intracellular and extracellular oxygen drop after infection in both intestinal organoid models as well as in Caco-2 cells, which even 48 h after elimination of extracellular bacteria, did not return to preinfection oxygen levels. In summary, we show alterations in sterol metabolism and intra- and extracellular hypoxia as a result of S. aureus infection. These results will help understand the cellular stress responses during sustained bacterial infections in the intestinal epithelium.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Oxygen , Caco-2 Cells , Intestines , Organoids , Cholesterol
3.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682834

ABSTRACT

Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies.


Subject(s)
Distemper Virus, Canine , Histiocytic Sarcoma , Animals , Calreticulin , Cell Line , Distemper Virus, Canine/genetics , Dogs , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Histiocytic Sarcoma/genetics , Neon , Peptide Fragments , Persistent Infection , RNA, Messenger , Tumor Microenvironment
4.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328617

ABSTRACT

Formation of neutrophil extracellular traps (NETs) is a two-faced innate host defense mechanism, which, on the one hand, can counteract microbial infections, but on the other hand, can contribute to massive detrimental effects on the host. Cholesterol depletion from the cellular membrane by Methyl-ß-cyclodextrin (MßCD) is known as one of the processes initiating NET formation. Since neutrophils mainly act in an inflammatory environment with decreased, so-called hypoxic, oxygen conditions, we aimed to study the effect of oxygen and the oxygen stress regulator hypoxia-inducible factor (HIF)-1α on cholesterol-dependent NET formation. Thus, murine bone marrow-derived neutrophils from wild-type and HIF-knockout mice or human neutrophils were stimulated with MßCD under normoxic (21% O2) compared to hypoxic (1% O2) conditions, and the formation of NETs were studied by immunofluorescence microscopy. We found significantly induced NET formation after treatment with MßCD in murine neutrophils derived from wild-type as well as HIF-1α KO mice at both hypoxic (1% O2) as well as normoxic (21% O2) conditions. Similar observations were made in freshly isolated human neutrophils after stimulation with MßCD or statins, which block the HMG-CoA reductase as the key enzyme in the cholesterol metabolism. HPLC was used to confirm the reduction of cholesterol in treated neutrophils. In summary, we were able to show that NET formation via MßCD or statin-treatment is oxygen and HIF-1α independent.


Subject(s)
Extracellular Traps , Animals , Cholesterol/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Neutrophils/metabolism , Oxygen/metabolism
5.
iScience ; 24(12): 103469, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34812415

ABSTRACT

Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.

6.
BMC Bioinformatics ; 22(1): 572, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34837942

ABSTRACT

BACKGROUND: Viral infections are causing significant morbidity and mortality worldwide. Understanding the interaction patterns between a particular virus and human proteins plays a crucial role in unveiling the underlying mechanism of viral infection and pathogenesis. This could further help in prevention and treatment of virus-related diseases. However, the task of predicting protein-protein interactions between a new virus and human cells is extremely challenging due to scarce data on virus-human interactions and fast mutation rates of most viruses. RESULTS: We developed a multitask transfer learning approach that exploits the information of around 24 million protein sequences and the interaction patterns from the human interactome to counter the problem of small training datasets. Instead of using hand-crafted protein features, we utilize statistically rich protein representations learned by a deep language modeling approach from a massive source of protein sequences. Additionally, we employ an additional objective which aims to maximize the probability of observing human protein-protein interactions. This additional task objective acts as a regularizer and also allows to incorporate domain knowledge to inform the virus-human protein-protein interaction prediction model. CONCLUSIONS: Our approach achieved competitive results on 13 benchmark datasets and the case study for the SARS-COV-2 virus receptor. Experimental results show that our proposed model works effectively for both virus-human and bacteria-human protein-protein interaction prediction tasks. We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/multitask-transfer .


Subject(s)
COVID-19 , Viruses , Algorithms , Humans , Machine Learning , Reproducibility of Results , SARS-CoV-2
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638978

ABSTRACT

Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.


Subject(s)
COVID-19/veterinary , Cats/virology , Lions/virology , Angiotensin-Converting Enzyme 2/analysis , Animals , COVID-19/transmission , COVID-19/virology , Cat Diseases/transmission , Cat Diseases/virology , Cells, Cultured , Disease Susceptibility , Humans , Lung/cytology , Lung/virology , Nose/cytology , Nose/virology , SARS-CoV-2/isolation & purification , Trachea/cytology , Trachea/virology
8.
PLoS One ; 16(8): e0255335, 2021.
Article in English | MEDLINE | ID: mdl-34347801

ABSTRACT

The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglandin-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.


Subject(s)
COVID-19/pathology , Dinoprostone/blood , Immunity , Adolescent , Adult , Animals , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Cells, Cultured , Chlorocebus aethiops , Dinoprostone/pharmacology , Dinoprostone/physiology , Disease Progression , Female , Humans , Immunity/drug effects , Immunity/physiology , Male , Middle Aged , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Vero Cells , Young Adult
9.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209751

ABSTRACT

The HCV replication cycle is tightly associated with host lipid metabolism: Lipoprotein receptors SR-B1 and LDLr promote entry of HCV, replication is associated with the formation of lipid-rich membranous organelles and infectious particle assembly highjacks the very­low-density lipoprotein (VLDL) secretory pathway. Hence, medications that interfere with the lipid metabolism of the cell, such as statins, may affect HCV infection. Here, we study the interplay between lipoprotein receptors, lipid homeostasis, and HCV infection by genetic and pharmacological interventions. We found that individual ablation of the lipoprotein receptors SR­B1 and LDLr did not drastically affect HCV entry, replication, or infection, but double lipoprotein receptor knock-outs significantly reduced HCV infection. Furthermore, we could show that this effect was neither due to altered expression of additional HCV entry factors nor caused by changes in cellular cholesterol content. Strikingly, whereas lipid­lowering drugs such as simvastatin or fenofibrate did not affect HCV entry or infection of immortalized hepatoma cells expressing SR-B1 and/or LDLr or primary human hepatocytes, ablation of these receptors rendered cells more susceptible to these drugs. Finally, we observed no significant differences between statin users and control groups with regards to HCV viral load in a cohort of HCV infected patients before and during HCV antiviral treatment. Interestingly, statin treatment, which blocks the mevalonate pathway leading to decreased cholesterol levels, was associated with mild but appreciable lower levels of liver damage markers before HCV therapy. Overall, our findings confirm the role of lipid homeostasis in HCV infection and highlight the importance of the mevalonate pathway in the HCV replication cycle.


Subject(s)
Hepacivirus/pathogenicity , Hypolipidemic Agents/pharmacology , Receptors, Lipoprotein/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Cell Line , Cells, Cultured , Cholesterol/metabolism , Cohort Studies , Genotype , Glycoproteins/metabolism , Hepacivirus/drug effects , Hepacivirus/genetics , Hepatitis C/pathology , Hepatitis C/virology , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/virology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Receptors, Lipoprotein/deficiency , Virus Internalization/drug effects , Virus Replication/drug effects
10.
Front Immunol ; 12: 581786, 2021.
Article in English | MEDLINE | ID: mdl-33717065

ABSTRACT

Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.


Subject(s)
Antiviral Agents/immunology , Herpesviridae/immunology , Hydroxycholesterols/immunology , Rhabdoviridae/immunology , Animals , Antiviral Agents/metabolism , Carps/genetics , Carps/metabolism , Carps/virology , Cell Line , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Gene Expression Regulation/immunology , Herpesviridae/physiology , Host-Pathogen Interactions/immunology , Hydroxycholesterols/metabolism , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Rhabdoviridae/physiology , Virus Internalization , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL