Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Front Bioeng Biotechnol ; 9: 684043, 2021.
Article in English | MEDLINE | ID: mdl-34409020

ABSTRACT

Experimental studies have demonstrated a relationship between spinal injury severity and vertebral kinematics, influenced by the initial spinal alignment of automotive occupants. Spinal alignment has been considered one of the possible causes of gender differences in the risk of sustaining spinal injuries. To predict vertebral kinematics and investigate spinal injury mechanisms, including gender-related mechanisms, under different seat back inclinations, it is needed to investigate the effect of the seat back inclination on initial spinal alignment in automotive seating postures for both men and women. The purpose of this study was to investigate the effect of the seat back inclination on spinal alignments, comparing spinal alignments of automotive seating postures in the 20° and 25° seat back angle and standing and supine postures. The spinal columns of 11 female and 12 male volunteers in automotive seating, standing, and supine postures were scanned in an upright open magnetic resonance imaging system. Patterns of their spinal alignments were analyzed using Multidimensional Scaling presented in a distribution map. Spinal segmental angles (cervical curvature, T1 slope, total thoracic kyphosis, upper thoracic kyphosis, lower thoracic kyphosis, lumbar lordosis, and sacral slope) were also measured using the imaging data. In the maximum individual variances in spinal alignment, a relationship between the cervical and thoracic spinal alignment was found in multidimensional scaling analyses. Subjects with a more lordotic cervical spine had a pronounced kyphotic thoracic spine, whereas subjects with a straighter to kyphotic cervical spine had a less kyphotic thoracic spine. When categorizing spinal alignments into two groups based on the spinal segmental angle of cervical curvature, spinal alignments with a lordotic cervical spine showed significantly greater absolute average values of T1 slope, total thoracic kyphosis, and lower thoracic kyphosis for both the 20° and 25° seat back angles. For automotive seating postures, the gender difference in spinal alignment was almost straight cervical and less-kyphotic thoracic spine for the female subjects and lordotic cervical and more pronounced kyphotic thoracic spine for the male subjects. The most prominent influence of seatback inclination appeared in Total thoracic kyphosis, with increased angles for 25° seat back, 8.0° greater in spinal alignments with a lordotic cervical spine, 3.2° greater in spinal alignments with a kyphotic cervical spine. The difference in total thoracic kyphosis between the two seatback angles and between the seating posture with the 20° seat back angle and the standing posture was greater for spinal alignments with a lordotic cervical spine than for spinal alignments with a kyphotic cervical spine. The female subjects in this study had a tendency toward the kyphotic cervical spine. Some of the differences between average gender-specific spinal alignments may be explained by the findings observed in the differences between spinal alignments with a lordotic and kyphotic cervical spine.

2.
Ann Biomed Eng ; 49(3): 1069-1082, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33215369

ABSTRACT

Drivers often react to an impending collision by bracing against the steering wheel. The goal of the present study was to quantify the effect of bracing on neck muscle activity and head/torso kinematics during low-speed front and rear impacts. Eleven seated subjects (3F, 8 M) experienced multiple sled impacts (Δv = 0.77 m/s; apeak = 19.9 m/s2, Δt = 65.5 ms) with their hands on the steering wheel in two conditions: relaxed and braced against the steering wheel. Electromyographic activity in eight neck muscles (sternohyoid, sternocleidomastoid, splenius capitis, semispinalis capitis, semispinalis cervicis, multifidus, levator scapulae, and trapezius) was recorded unilaterally with indwelling electrodes and normalized by maximum voluntary contraction (MVC) levels. Head and torso kinematics (linear acceleration, angular velocity, angular rotation, and retraction) were measured with sensors and motion tracking. Muscle and kinematic variables were compared between the relaxed and braced conditions using linear mixed models. We found that pre-impact bracing generated only small increases in the pre-impact muscle activity (< 5% MVC) when compared to the relaxed condition. Pre-impact bracing did not increase peak neck muscle responses during the impacts; instead it reduced peak trapezius and multifidus muscle activity by about half during front impacts. Bracing led to widespread changes in the peak amplitude and timing of the torso and head kinematics that were not consistent with a simple stiffening of the head/neck/torso system. Instead pre-impact bracing served to couple the torso more rigidly to the seat while not necessarily coupling the head more rigidly to the torso.


Subject(s)
Accidents, Traffic , Automobile Driving , Neck Muscles/physiology , Posture/physiology , Adult , Biomechanical Phenomena , Female , Head/physiology , Humans , Male , Middle Aged , Neck/physiology , Torso/physiology , Young Adult
3.
J Mech Behav Biomed Mater ; 106: 103742, 2020 06.
Article in English | MEDLINE | ID: mdl-32250953

ABSTRACT

To enable analysis of the risk of occupants sustaining rib fractures in a crash, generic finite element models of human ribs, one through twelve, were developed. The generic ribs representing an average sized male, were created based on data from several sources and publications. The generic ribs were validated for stiffness and strain predictions in anterior-posterior bending. Essentially, both predicted rib stiffness and rib strain, measured at six locations, were within one standard deviation of the average result in the physical tests. These generic finite elements ribs are suitable for strain-based rib fracture risk predictions, when loaded in anterior-posterior bending. To ensure that human variability is accounted for in future studies, a rib parametric study was conducted. This study shows that the rib cross-sectional height, i.e., the smallest of the cross-sectional dimensions, accounted for most of the strain variance during anterior-posterior loading of the ribs. Therefore, for future rib fracture risk predictions with morphed models of the human thorax, it is important to accurately address rib cross-sectional height.


Subject(s)
Accidents, Traffic , Finite Element Analysis , Rib Fractures , Biomechanical Phenomena , Cross-Sectional Studies , Humans , Male , Ribs , Risk Assessment
4.
J Biomech Eng ; 141(12)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31596923

ABSTRACT

The purpose of this study was to investigate the relationship between cervical, thoracic, and lumbar spinal alignments in one automotive occupant seated posture. An image dataset of the spinal column in the automotive seated posture, previously acquired by an upright open magnetic resonance imaging (MRI) system, was re-analyzed in this study. Spinal alignments were presented by the geometrical centers of the vertebral bodies extracted from the image data. Cervical, thoracic, and lumbar spinal alignments were analyzed separately with multidimensional scaling (MDS). Based on distribution maps of cervical, thoracic, and lumbar spinal alignments created by MDS, representative spinal alignment patterns of the cervical, thoracic, and lumbar spines and the relationship between cervical, thoracic, and lumbar spinal alignments were investigated. As a result, this study found a correlation between cervical and thoracic spinal alignments in an automotive occupant seated posture. According to representative spinal alignment patterns illustrated by the distribution map of spinal alignments, subjects who had kyphotic cervical spinal alignment tended to have less kyphotic thoracic spinal alignment, while subjects who had lordotic cervical spinal alignment tended to have more kyphotic thoracic spinal alignment. For lumbar spinal alignments, no prominent relationship was found between cervical and thoracic spinal alignment in the seated condition of this study.

5.
Traffic Inj Prev ; 20(sup1): S43-S51, 2019.
Article in English | MEDLINE | ID: mdl-31381435

ABSTRACT

Objective: The introduction of integrated safety technologies in new car models calls for an improved understanding of the human occupant response in precrash situations. The aim of this article is to extensively study occupant muscle activation in vehicle maneuvers potentially occurring in precrash situations with different seat belt configurations. Methods: Front seat male passengers wearing a 3-point seat belt with either standard or pre-pretensioning functionality were exposed to multiple autonomously carried out lane change and lane change with braking maneuvers while traveling at 73 km/h. This article focuses on muscle activation data (surface electromyography [EMG] normalized using maximum voluntary contraction [MVC] data) obtained from 38 muscles in the neck, upper extremities, the torso, and lower extremities. The raw EMG data were filtered, rectified, and smoothed. All muscle activations were presented in corridors of mean ± one standard deviation. Separate Wilcoxon signed ranks tests were performed on volunteers' muscle activation onset and amplitude considering 2 paired samples with the belt configuration as an independent factor. Results: In normal driving conditions prior to any of the evasive maneuvers, activity levels were low (<2% MVC) in all muscles except for the lumbar extensors (3-5.5% MVC). During the lane change maneuver, selective muscles were activated and these activations restricted the sideway motions due to inertial loading. Averaged muscle activity, predominantly in the neck, lumbar extensor, and abdominal muscles, increased up to 24% MVC soon after the vehicle accelerated in lateral direction for all volunteers. Differences in activation time and amplitude between muscles in the right and left sides of the body were observed relative to the vehicle's lateral motion. For specific muscles, lane changes with the pre-pretensioner belt were associated with earlier muscle activation onsets and significantly smaller activation amplitudes than for the standard belt (P < .05). Conclusions: Applying a pre-pretensioner belt affected muscle activations; that is, amplitude and onset time. The present muscle activation data complement the results in a preceding publication, the volunteers' kinematics and the boundary conditions from the same data set. An effect of belt configuration was also seen on previously published volunteers' kinematics with lower lateral and forward displacements for head and upper torso using the pre-pretensioner belt versus the standard belt. The data provided in this article can be used for validation and further improvement of active human body models with active musculature in both sagittal and lateral loading scenarios intended for simulation of some evasive maneuvers that potentially occur prior to a crash.


Subject(s)
Accidents, Traffic/prevention & control , Automobile Driving/statistics & numerical data , Deceleration , Muscles/physiology , Seat Belts/statistics & numerical data , Adult , Aged , Biomechanical Phenomena , Equipment Design , Humans , Male , Middle Aged , Young Adult
6.
Traffic Inj Prev ; 19(sup1): S186-S188, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29584507

ABSTRACT

OBJECTIVES: To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. METHODS: Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. RESULTS: EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. CONCLUSIONS: These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.


Subject(s)
Accidents, Traffic/statistics & numerical data , Muscle, Skeletal/physiology , Recruitment, Neurophysiological/physiology , Acceleration , Computer Simulation , Female , Humans , Isometric Contraction , Male , Posture
7.
J Biomech Eng ; 140(4)2018 04 01.
Article in English | MEDLINE | ID: mdl-29049689

ABSTRACT

Finite element human body models (FEHBMs) are nowadays commonly used to simulate pre- and in-crash occupant response in order to develop advanced safety systems. In this study, a biofidelic model for adipose tissue is developed for this application. It is a nonlinear viscoelastic model based on the Reese et al.'s formulation. The model is formulated in a large strain framework and applied for finite element (FE) simulation of two types of experiments: rheological experiments and ramped-displacement experiments. The adipose tissue behavior in both experiments is represented well by this model. It indicates the capability of the model to be used in large deformation and wide range of strain rates for application in human body models.


Subject(s)
Adipose Tissue/cytology , Elasticity , Finite Element Analysis , Nonlinear Dynamics , Stress, Mechanical , Biomechanical Phenomena , Calibration , Materials Testing , Rheology , Viscosity
8.
PLoS One ; 12(1): e0170377, 2017.
Article in English | MEDLINE | ID: mdl-28099505

ABSTRACT

Emergency events can influence a child's kinematics prior to a car-crash, and thus its interaction with the restraint system. Numerical Human Body Models (HBMs) can help understand the behaviour of children in emergency events. The kinematic responses of two child HBMs-MADYMO 6 and 10 year-old models-were evaluated and compared with child volunteers' data during emergency events-braking and steering-with a focus on the forehead and sternum displacements. The response of the 6 year-old HBM was similar to the response of the 10 year-old HBM, however both models had a different response compared with the volunteers. The forward and lateral displacements were within the range of volunteer data up to approximately 0.3 s; but then, the HBMs head and sternum moved significantly downwards, while the volunteers experienced smaller displacement and tended to come back to their initial posture. Therefore, these HBMs, originally intended for crash simulations, are not too stiff and could be able to reproduce properly emergency events thanks, for instance, to postural control.


Subject(s)
Accidents, Traffic , Biomechanical Phenomena/physiology , Child Restraint Systems , Deceleration/adverse effects , Manikins , Models, Anatomic , Automobile Driving , Child , Emergencies , Human Body , Humans , Male , Posture/physiology
9.
J Biomech ; 51: 49-56, 2017 01 25.
Article in English | MEDLINE | ID: mdl-27988036

ABSTRACT

Several mathematical cervical models of the 50th percentile male have been developed and used for impact biomechanics research. However, for the 50th percentile female no similar modelling efforts have been made, despite females being subject to a higher risk of soft tissue neck injuries. This is a limitation for the development of automotive protective systems addressing Whiplash Associated Disorders (WADs), most commonly caused in rear impacts, as the risk for females sustaining WAD symptoms is double that of males. In this study, a finite element head and neck model of a 50th percentile female was validated in rear impacts. A previously validated ligamentous cervical spine model was complemented with a rigid body head, soft tissues and muscles. In both physiological flexion-extension motions and simulated rear impacts, the kinematic response at segment level was comparable to that of human subjects. Evaluation of ligament stress levels in simulations with varied initial cervical curvature revealed that if an individual assumes a more lordotic posture than the neutral, a higher risk of WAD might occur in rear impact. The female head and neck model, together with a kinematical whole body model which is under development, addresses a need for tools for assessment of automotive protection systems for the group which is at the highest risk to sustain WAD.


Subject(s)
Cervical Vertebrae/physiopathology , Head/physiology , Models, Biological , Neck Injuries/physiopathology , Neck/physiology , Accidents, Traffic , Adult , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Ligaments/physiology
10.
J Biomech Eng ; 138(6): 061005, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26974520

ABSTRACT

Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic-elastic. The model has geometrical features representative of the female cervical spine-the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion-extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion-extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.


Subject(s)
Cervical Vertebrae/physiology , Finite Element Analysis , Ligaments/physiology , Adult , Cervical Vertebrae/anatomy & histology , Female , Humans , Joints/physiology , Ligaments/anatomy & histology , Models, Biological , Weight-Bearing
11.
Accid Anal Prev ; 85: 73-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26397197

ABSTRACT

There is a need to improve the protection to the thorax of occupants in frontal car crashes. Finite element human body models are a more detailed representation of humans than anthropomorphic test devices (ATDs). On the other hand, there is no clear consensus on the injury criteria and the thresholds to use with finite element human body models to predict rib fractures. The objective of this study was to establish a set of injury risk curves to predict rib fractures using a modified Total HUman Model for Safety (THUMS). Injury criteria at the global, structural and material levels were computed with a modified THUMS in matched Post Mortem Human Subjects (PMHSs) tests. Finally, the quality of each injury risk curve was determined. For the included PMHS tests and the modified THUMS, DcTHOR and shear stress were the criteria at the global and material levels that reached an acceptable quality. The injury risk curves at the structural level did not reach an acceptable quality.


Subject(s)
Accidents, Traffic/prevention & control , Accidents, Traffic/statistics & numerical data , Human Body , Rib Fractures/prevention & control , Safety Management/methods , Adult , Female , Humans , Male , Middle Aged , Models, Biological , Motor Vehicles , Risk Assessment , Seat Belts , Stress, Mechanical
12.
Spine (Phila Pa 1976) ; 40(4): E211-9, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25423306

ABSTRACT

STUDY DESIGN: Human volunteers were exposed experimentally to multidirectional seated perturbations. OBJECTIVE: To determine the activation patterns, spatial distribution and preferred directions of reflexively activated cervical muscles for human model development and validation. SUMMARY OF BACKGROUND DATA: Models of the human head and neck are used to predict occupant kinematics and injuries in motor vehicle collisions. Because of a dearth of relevant experimental data, few models use activation schemes based on in vivo recordings of muscle activation and instead assume uniform activation levels for all muscles within presumed agonist or antagonist groups. Data recorded from individual cervical muscles are needed to validate or refute this assumption. METHODS: Eight subjects (6 males, 2 females) were exposed to seated perturbations in 8 directions. Electromyography was measured with wire electrodes inserted into the sternocleidomastoid, trapezius, levator scapulae, splenius capitis, semispinalis capitis, semispinalis cervicis, and multifidus muscles. Surface electrodes were used to measure sternohyoid activity. Muscle activity evoked by the perturbations was normalized with recordings from maximum voluntary contractions. RESULTS: The multidirectional perturbations produced activation patterns that varied with direction within and between muscles. Sternocleidomastoid and sternohyoid activated similarly in forward and forward oblique directions. The semispinalis capitis, semispinalis cervicis, and multifidus exhibited similar spatial patterns and preferred directions, but varied in activation levels. Levator scapulae and trapezius activity generally remained low, and splenius capitis activity varied widely between subjects. CONCLUSION: All muscles showed muscle- and direction-specific contraction levels. Models should implement muscle- and direction-specific activation schemes during simulations of the head and neck responses to omnidirectional horizontal perturbations where muscle forces influence kinematics, such as during emergency maneuvers and low-severity crashes. LEVEL OF EVIDENCE: N/A.


Subject(s)
Muscle Contraction/physiology , Neck Muscles/physiology , Reflex/physiology , Accidents, Traffic , Adult , Biomechanical Phenomena/physiology , Electromyography , Female , Humans , Male , Orientation/physiology
13.
Traffic Inj Prev ; 16: 304-13, 2015.
Article in English | MEDLINE | ID: mdl-24950131

ABSTRACT

OBJECTIVE: The aim of this work is to study driver and passenger kinematics in autonomous braking scenarios, with and without pretensioned seat belts, using a whole-body finite element (FE) human body model (HBM) with active muscles. METHODS: Upper extremity musculature for elbow and shoulder flexion-extension feedback control was added to an HBM that was previously complemented with feedback controlled muscles for the trunk and neck. Controller gains were found using a radial basis function metamodel sampled by making 144 simulations of an 8 ms(-2) volunteer sled test. The HBM kinematics, interaction forces, and muscle activations were validated using a second volunteer data set for the passenger and driver positions, with and without 170 N seat belt pretension, in 11 ms(-2) autonomous braking deceleration. The HBM was then used for a parameter study in which seat belt pretension force and timing were varied from 170 to 570 N and from 0.25 s before to 0.15 s after deceleration onset, in an 11 ms(-2) autonomous braking scenario. RESULTS: The model validation showed that the forward displacements and interaction forces of the HBM correlated with those of corresponding volunteer tests. Muscle activations and head rotation angles were overestimated in the HBM when compared with volunteer data. With a standard seat belt in 11 ms(-2) autonomous braking interventions, the HBM exhibited peak forward head displacements of 153 and 232 mm for the driver and passenger positions. When 570 N seat belt pretension was applied 0.15 s before deceleration onset, a reduction of peak head displacements to 60 and 75 mm was predicted. CONCLUSIONS: Driver and passenger responses to autonomous braking with standard and pretensioned restraints were successfully modeled in a whole-body FE HBM with feedback controlled active muscles. Variations of belt pretension force level and timing revealed that belt pretension 0.15 s before deceleration onset had the largest effect in reducing forward head and torso movement caused by the autonomous brake intervention. The displacement of the head relative to the torso for the HBM is quite constant for all variations in timing and belt force; it is the reduced torso displacements that lead to reduced forward head displacements.


Subject(s)
Automobile Driving/statistics & numerical data , Deceleration , Models, Biological , Muscle, Skeletal/physiology , Seat Belts/statistics & numerical data , Biomechanical Phenomena , Computer Simulation , Elbow/physiology , Finite Element Analysis , Head/physiology , Humans , Neck/physiology , Shoulder/physiology , Torso/physiology
14.
Traffic Inj Prev ; 16(5): 498-506, 2015.
Article in English | MEDLINE | ID: mdl-25287938

ABSTRACT

OBJECTIVE: Head injuries account for the largest percentage of fatalities among pedestrians in car crashes. To prevent or mitigate such injuries, safety systems that reduce head linear and rotational acceleration should be introduced. Human body models (HBMs) are valuable safety system evaluation tools for assessing both head injury risk and head kinematics prior to head contact. This article aims to evaluate the suitability of the Total Human Model for Safety (THUMS) version 4.0 for studying shoulder impacts, similar to pedestrian crashes, investigating head, spine, and shoulder kinematics as well as shoulder biomechanics. METHODS: Shoulder impact experiments including volunteers and postmortem human subjects (PMHSs) were simulated with THUMS. Head linear and angular and vertebral linear displacements of THUMS were compared with volunteers and shoulder deflections with both volunteers and PMHSs. A parameter variation study was conducted to assess head response to shoulder impacts, by varying shoulder posture and impact directions mimicking shoulder-to-vehicle contacts. Functional biomechanics literature was compared with THUMS responses in view of pedestrian-like shoulder impacts. RESULTS: THUMS head linear displacement compared better with tensed than with relaxed volunteers. Head lateral rotation was comparable with volunteer responses up to 120 ms; head twist was greater in THUMS than in the volunteers. The THUMS spine appeared to be stiffer than in the volunteers. Shoulder deflections were smaller than in the relaxed volunteers but matched the PMHSs. Raised shoulder postures decreased the THUMS shoulder deflections and increased head lateral displacements. When the impactor surface orientation or the impact velocity angle was changed from lateral to superolateral, THUMS head lateral displacement decreased. THUMS scapula and clavicle kinematics compared well with previous experimental studies. The shoulder impact conditions influenced the scapula motion over the thorax, which had considerable effect on upper torso and head kinematics. The clavicle primarily acted as a guide for the scapula. In the PMHS experiments, it took 20 ms from first impactor-to-shoulder contact to head response, indicating that shoulder impacts in pedestrian crashes may influence head kinematics during head impact. CONCLUSIONS: THUMS is generally suitable for studying head linear kinematics and head lateral rotation in shoulder impacts similar to pedestrian crashes and for studying shoulder girdle biomechanics. Head twist and spine stiffness were more pronounced than in the volunteers. The results have identified the need for additional volunteer shoulder impact testing, mimicking pedestrian crashes, as well as the need to address shoulder impacts in full-scale pedestrian experiments.


Subject(s)
Accidents, Traffic/statistics & numerical data , Head/physiology , Shoulder/physiology , Biomechanical Phenomena , Computer Simulation , Craniocerebral Trauma/physiopathology , Humans , Models, Biological , Safety , Shoulder Injuries , Walking/injuries
15.
Gait Posture ; 40(4): 664-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25174533

ABSTRACT

Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering.


Subject(s)
Automobile Driving , Muscle, Skeletal/physiology , Posture/physiology , Adult , Biomechanical Phenomena , Computer Simulation , Deceleration , Electromyography , Feedback , Female , Humans , Male , Models, Theoretical
16.
Proc Inst Mech Eng H ; 227(5): 571-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23637267

ABSTRACT

Human body models with biofidelic kinematics in vehicle pre-crash and crash simulations require a constitutive model of muscle tissue with both passive and active properties. Therefore, a transversely isotropic viscohyperelastic continuum material model with element-local fiber definition and activation capability is suggested for use with explicit finite element codes. Simulations of experiments with New Zealand rabbit's tibialis anterior muscle at three different strain rates were performed. Three different active force-length relations were used, where a robust performance of the material model was observed. The results were compared with the experimental data and the simulation results from a previous study, where the muscle tissue was modeled with a combination of discrete and continuum elements. The proposed material model compared favorably, and integrating the active properties of the muscle into a continuum material model opens for applications with complex muscle geometries.


Subject(s)
Models, Anatomic , Models, Biological , Muscle Contraction/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Computer Simulation , Elastic Modulus/physiology , Humans , Stress, Mechanical , Tensile Strength/physiology , Viscosity
17.
Traffic Inj Prev ; 14(1): 92-102, 2013.
Article in English | MEDLINE | ID: mdl-23259524

ABSTRACT

OBJECTIVES: The objective of this study was to present, compare, and discuss the kinematic response of children and child anthropomorphic test devices (ATDs) during emergency braking events in different restraint configurations in a passenger vehicle. METHODS: A driving study was conducted on a closed-circuit test track comprising 16 children aged 4 to 12 years old and the Q3, Hybrid III (HIII) 3-year-old, 6-year-old, and 10-year-old ATDs restrained on the right rear seat of a modern passenger vehicle. The children were exposed to one braking event in each of the 2 restraint systems and the ATDs were exposed to 2 braking events in each restraint system. All events had a deceleration of 1.0 g. Short children (stature 107-123 cm) and the Q3, HIII 3-year-old, and 6-year-old were restrained on booster cushions as well as high-back booster seats. Tall children (stature 135-150 cm) and HIII 10-year-old were restrained on booster cushions or restrained by 3-point belts directly on the car seat. Vehicle data were collected and synchronized with video data. Forward trajectories for the forehead and external auditory canal (ear) were determined as well as head rotation and shoulder belt force. RESULTS: A total of 40 trials were analyzed. Child volunteers had greater maximum forward displacement of the head and greater head rotation compared to the ATDs. The average maximum displacement for children ranged from 165 to 210 mm and 155 to 195 mm for the forehead and ear target, respectively. Corresponding values for the ATDs were 55 to 165 mm and 50 to 160 mm. The change in head angle was greater for short children than for tall children. Shoulder belt force was within the same range for short children when restrained on booster cushions or high-back booster seats. For tall children, the shoulder belt force was greater when restrained on booster cushions compared to being restrained by seat belts directly on the car seat. CONCLUSIONS: The forward displacement was within the same range for all children regardless of stature and restraint system. However, the maximum forward position depended on the initial seated posture and shoulder belt position on the shoulder. Differences could also be seen in the curvature of the neck and spine. Short children exhibited a greater flexion motion of the head, whereas a more upright posture at maximum forward position was exhibited by the tall children. The ATDs displayed less forward displacement compared to the children.


Subject(s)
Automobile Driving/statistics & numerical data , Child Restraint Systems/statistics & numerical data , Deceleration , Emergencies , Human Experimentation , Manikins , Anthropometry , Biomechanical Phenomena , Child , Child, Preschool , Female , Head/physiology , Humans , Male , Neck/physiology , Seat Belts , Shoulder/physiology , Spine/physiology , Videotape Recording
18.
Stapp Car Crash J ; 57: 1-41, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24435725

ABSTRACT

The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males. The range of activity during steady state braking for males and females was 13-44% in the cervical and lumbar extensors, while antagonistic muscles showed a co-contraction of 2.3-19%. Seat belt pre-tension affects both the kinematic and muscle responses of drivers. In autonomous braking with standard restraints, muscle activation occurred in response to the inertial load. With pre-tensioned seat belts, EMG onset occurred earlier; between 71 ms and 176 ms after belt pre-tension. The EMG onset times decreased with repeated trials and were shorter for females than for males. With the results from this study, further improvement and validation of human models that incorporate active musculature will be made possible.


Subject(s)
Automobile Driving , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Accidents, Traffic/prevention & control , Adult , Biomechanical Phenomena , Electromyography , Equipment Design , Female , Humans , Male , Task Performance and Analysis , Young Adult
19.
Traffic Inj Prev ; 13(3): 265-77, 2012.
Article in English | MEDLINE | ID: mdl-22607249

ABSTRACT

OBJECTIVE: The aim of this study is to model occupant kinematics in an autonomous braking event by using a finite element (FE) human body model (HBM) with active muscles as a step toward HBMs that can be used for injury prediction in integrated precrash and crash simulations. METHODS: Trunk and neck musculature was added to an existing FE HBM. Active muscle responses were achieved using a simplified implementation of 3 feedback controllers for head angle, neck angle, and angle of the lumbar spine. The HBM was compared with volunteer responses in sled tests with 10 ms(-2) deceleration over 0.2 s and in 1.4-s autonomous braking interventions with a peak deceleration of 6.7 ms(-2). RESULTS: The HBM captures the characteristics of the kinematics of volunteers in sled tests. Peak forward displacements have the same timing as for the volunteers, and lumbar muscle activation timing matches data from one of the volunteers. The responses of volunteers in autonomous braking interventions are mainly small head rotations and translational motions. This is captured by the HBM controller objective, which is to maintain the initial angular positions. The HBM response with active muscles is within ±1 standard deviation of the average volunteer response with respect to head displacements and angular rotation. CONCLUSIONS: With the implementation of feedback control of active musculature in an FE HBM it is possible to model the occupant response to autonomous braking interventions. The lumbar controller is important for the simulations of lap belt-restrained occupants; it is less important for the kinematics of occupants with a modern 3-point seat belt. Increasing head and neck controller gains provides a better correlation for head rotation, whereas it reduces the vertical head displacement and introduces oscillations.


Subject(s)
Accidents, Traffic/statistics & numerical data , Deceleration , Finite Element Analysis , Models, Biological , Muscle, Skeletal/physiology , Trauma Severity Indices , Adult , Automation , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Models, Anatomic , Neck Muscles/physiology
20.
Article in English | MEDLINE | ID: mdl-21294008

ABSTRACT

Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.


Subject(s)
Arm/physiology , Models, Biological , Muscle, Skeletal/physiology , Acceleration , Accidents, Traffic , Adult , Arm/anatomy & histology , Biomechanical Phenomena , Biomedical Engineering , Computer Simulation , Feedback, Physiological , Female , Finite Element Analysis , Humans , Male , Models, Anatomic , Muscle Contraction/physiology , Nonlinear Dynamics , Posture/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...