Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(24): 21337-21345, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35755371

ABSTRACT

Gadolinium chelates are employed worldwide today as clinical contrast agents for magnetic resonance imaging. Until now, the commonly used linear contrast agents based on the rare-earth element gadolinium have been considered safe and well-tolerated. Recently, concerns regarding this type of contrast agent have been reported, which is why there is an urgent need to develop the next generation of stable contrast agents with enhanced spin-lattice relaxation, as measured by improved T 1 relaxivity at lower doses. Here, we show that by the integration of gadolinium ions in cerium oxide nanoparticles, a stable crystalline 5 nm sized nanoparticulate system with a homogeneous gadolinium ion distribution is obtained. These cerium oxide nanoparticles with entrapped gadolinium deliver strong T 1 relaxivity per gadolinium ion (T 1 relaxivity, r 1 = 12.0 mM-1 s-1) with the potential to act as scavengers of reactive oxygen species (ROS). The presence of Ce3+ sites and oxygen vacancies at the surface plays a critical role in providing the antioxidant properties. The characterization of radial distribution of Ce3+ and Ce4+ oxidation states indicated a higher concentration of Ce3+ at the nanoparticle surfaces. Additionally, we investigated the ROS-scavenging capabilities of pure gadolinium-containing cerium oxide nanoparticles by bioluminescent imaging in vivo, where inhibitory effects on ROS activity are shown.

2.
Small ; 17(31): e2101440, 2021 08.
Article in English | MEDLINE | ID: mdl-34173333

ABSTRACT

Given the breadth of currently arising opportunities and concerns associated with nanoparticles for biomedical imaging, various types of nanoparticles have been widely exploited, especially for cellular/subcellular level probing. However, most currently reported nanoparticles either have inefficient delivery into cells or lack specificity for intracellular destinations. The absence of well-defined nanoplatforms remains a critical challenge hindering practical nano-based bio-imaging. Herein, the authors elaborate on a tailorable membrane-penetrating nanoplatform as a carrier with encapsulated actives and decorated surfaces to tackle the above-mentioned issues. The tunable contents in such a versatile nanoplatform offer huge flexibility to reach the expected properties and functions. Aggregation-induced emission luminogen (AIEgen) is applied to achieve sought-after photophysical properties, specific targeting moieties are installed to give high affinity towards different desired organelles, and critical grafting of cell-penetrating cyclic disulfides (CPCDs) to promote cellular uptake efficiency without sacrificing the specificity. Hereafter, to validate its practicability, the tailored nano products are successfully applied to track the dynamic correlation between mitochondria and lysosomes during autophagy. The authors believe that the strategy and described materials can facilitate the development of functional nanomaterials for various life science applications.


Subject(s)
Nanoparticles , Nanostructures , Lysosomes , Mitochondria , Organelles/metabolism
3.
Nano Lett ; 21(1): 222-229, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33263404

ABSTRACT

Photoemission electron microscopy and imaging X-ray photoelectron spectroscopy are today frequently used to obtain chemical and electronic states, chemical shifts, work function profiles within the fields of surface- and material sciences. Lately, because of recent technological advances, these tools have also been valuable within life sciences. In this study, we have investigated the power of photoemission electron microscopy and imaging X-ray photoelectron spectroscopy for visualization of human neutrophil granulocytes. These cells, commonly called neutrophils, are essential for our innate immune system. We hereby investigate the structure and morphology of neutrophils when adhered to gold and silicon surfaces. Energy-filtered imaging of single cells are acquired. The characteristic polymorphonuclear cellular nuclei divided into 2-5 lobes is visualized. Element-specific imaging is achieved based on O 1s, P 2p, C 1s, Si 2p, and N 1s core level spectra, delivering elemental distribution with submicrometer resolution, illustrating the strength of this type of cellular morphological studies.


Subject(s)
Neutrophils , Silicon , Cell Nucleus , Humans , Microscopy, Electron , Photoelectron Spectroscopy
4.
Sci Rep ; 8(1): 6999, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29725117

ABSTRACT

The chelating gadolinium-complex is routinely used as magnetic resonance imaging (MRI) -contrast enhancer. However, several safety issues have recently been reported by FDA and PRAC. There is an urgent need for the next generation of safer MRI-contrast enhancers, with improved local contrast and targeting capabilities. Cerium oxide nanoparticles (CeNPs) are designed with fractions of up to 50% gadolinium to utilize the superior MRI-contrast properties of gadolinium. CeNPs are well-tolerated in vivo and have redox properties making them suitable for biomedical applications, for example scavenging purposes on the tissue- and cellular level and during tumor treatment to reduce in vivo inflammatory processes. Our near edge X-ray absorption fine structure (NEXAFS) studies show that implementation of gadolinium changes the initial co-existence of oxidation states Ce3+ and Ce4+ of cerium, thereby affecting the scavenging properties of the nanoparticles. Based on ab initio electronic structure calculations, we describe the most prominent spectral features for the respective oxidation states. The as-prepared gadolinium-implemented CeNPs are 3-5 nm in size, have r1-relaxivities between 7-13 mM-1 s-1 and show clear antioxidative properties, all of which means they are promising theranostic agents for use in future biomedical applications.

5.
Sci Rep ; 7(1): 7013, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765593

ABSTRACT

Protein-metal ion interactions are ubiquitous in nature and can be utilized for controlling the self-assembly of complex supramolecular architectures and materials. Here, a tunable supramolecular hydrogel is described, obtained by self-assembly of a Zn2+-responsive peptide-hyaluronic acid hybrid synthesized using strain promoted click chemistry. Addition of Zn2+ triggers folding of the peptides into a helix-loop-helix motif and dimerization into four-helix bundles, resulting in hydrogelation. Removal of the Zn2+ by chelators results in rapid hydrogel disassembly. Degradation of the hydrogels can also be time-programed by encapsulation of a hydrolyzing enzyme within the gel, offering multiple possibilities for modulating materials properties and release of encapsulated species. The hydrogel further shows potential antioxidant properties when evaluated using an in vitro model for reactive oxygen species.

6.
Biointerphases ; 12(2): 02C408, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464614

ABSTRACT

Combined photoemission electron microscopy (PEEM) and imaging x-ray photoelectron spectroscopy (XPS), i.e., electron spectroscopy for chemical analysis in the nanoregion, has been used for surface characterization of bio-relevant and biological samples. In the first example, the authors prepared a gold patterned silicon substrate, stepwise surface modified by self-assembled monolayers followed by quantum dot (QDot) specific linking and investigated by means of work function mapping and elemental imaging in the submicrometer range. Spatially resolved core level images of C1s, V2p, and Y3d are obtained, which verify the selective thiol adsorption on the gold squares and specific binding of europium doped yttrium vanadate QDots on the self-assembled monolayer. The second example is platelet adhesion to Immunoglobulin G modified silicon surfaces, investigated by means of laterally resolved PEEM. Images of platelets clearly show activated cells with a morphology change including an enlarged surface area and elongated pseudopodia, with a lateral resolution of 140 nm. In the last example, neutrophils were allowed to attach to plain silicon surfaces and investigated by means of PEEM and imaging XPS. Here, the cells show a round shaped morphology, as expected. Threshold imaging with work function contrast is used to localize the area of interest, followed by elemental specific mapping on cells in the submicrometer region. Chemical shifts of C1s in photoemission are used to distinguish vital parts of the cell structure. The strong C1s (C-C) signal is achieved from the region of the cell membrane, i.e., high density of phospholipids, while C1s (C-N) and C1s (C-O) signals are obtained from the core of the cell, in good agreement with the presence of cytoplasm and deoxyribonucleic acid containing cell nucleus. The combination of PEEM and imaging XPS is shown here as a tool to deliver new insight into biological samples, i.e., a rapid sample overview is obtained based on low energy secondary electrons with work function contrast, followed by detailed studies in the narrow mode for elemental compositions based on photoemission. This study illustrates the strength of combined PEEM and XPS in the imaging mode on cell studies.


Subject(s)
Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Leukocytes/metabolism , Leukocytes/ultrastructure , Microscopy, Electron , Photoelectron Spectroscopy , Humans
7.
Anal Chim Acta ; 933: 189-95, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27497012

ABSTRACT

We strategize to utilize the precursors of (imino)coumarin fluorophores to deliver novel reactive Cu(+) probes, where tris[(2-pyridyl)-methyl] amine (TPA) works as a reactive receptor towards Cu(+). To verify this strategy, CP1, a representative probe and relevant sensing behaviors towards Cu(+) are presented here. CP1 features good solubility and fast response for monitoring labile copper in aqueous solution and live cells. The sensing mechanism of CP1 is determined by HPLC titration and mass spectrometric analysis. The probe CP1 exhibits a 60-fold fluorescence enhancement and a detection limitation of 10.8 nM upon the detection of Cu(+). CP1 is further applied for imaging labile copper in live cells. This work provides a starting point for future development of Cu(+) probes, based on in situ formation of (imino)coumarin scaffolds, as well as their further investigations of copper signaling and biological events.


Subject(s)
Copper/analysis , Coumarins/chemistry , Fluorescent Dyes/chemistry , Imines/chemistry , Pyridines/chemistry , Molecular Structure
8.
J Mater Chem B ; 3(36): 7213-7221, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-32262828

ABSTRACT

It is still a challenge to obtain two-photon excited fluorescent bioimaging probes with intense emission, high photo-stability and low cytotoxicity. In the present work, four Zn(ii)-coordinated complexes (1-4) constructed from two novel D-A and D-π-A ligands (L1 and L2) are investigated both experimentally and theoretically, aiming to explore efficient two-photon probes for bioimaging. Molecular geometry optimization used for theoretical calculations is achieved using the crystallographic data. Notably, the results indicate that complexes 1 and 2 display enhanced two-photon absorption (2PA) cross sections compared to their corresponding D-A ligand (L1). Furthermore, it was found that complex 1 has the advantages of moderate 2PA cross section in the near-infrared region, longer fluorescence lifetime, higher quantum yield, good biocompatibility and enhanced two-photon excited fluorescence. Therefore, complex 1 is evaluated as a bioimaging probe for in vitro imaging of HepG2 cells, in which it is observed under a two-photon scanning microscope that complex 1 exhibits effective co-staining with endoplasmic reticulum (ER) and nuclear membrane; as well as for in vivo imaging of zebrafish larva, in which it is observed that complex 1 exhibits specificity in the intestinal system.

9.
Biointerphases ; 9(4): 041003, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25553878

ABSTRACT

Platelets are considered to have important functions in inflammatory processes as key players in innate immunity. Toll like receptors (TLRs), expressed on platelets, recognize pathogen associated molecular patterns and trigger immune responses. Pathogens are able to adhere to human tissues and form biofilms which cause a continuous activation of the immune system. The authors aimed to investigate how immobilized Pam3CSK4 (a synthetic TLR2/1 agonist) and IgG, respectively, resembling a bacterial focus, affects adhesion and activation of platelets including release of two cytokines, regulated on activation normal T-cell expressed and secreted (RANTES) and macrophage migration inhibitory factor (MIF). The authors also aim to clarify the signaling downstream of TLR2/1 and FcγRII (IgG receptor) and the role of adenine nucleotides in this process. Biolayers of Pam3CSK4 and IgG, respectively, were confirmed by null-ellipsometry and contact angle measurements. Platelets were preincubated with signaling inhibitors for scr and Syk and antagonists for P2X1 or P2Y1 [adenosine triphosphate (ATP), adenosine diphosphate (ADP) receptors] prior to addition to the surfaces. The authors show that platelets adhere and spread on both Pam3CSK4- and IgG-coated surfaces and that this process is antagonized by scr and Syc inhibitors as well as P2X1 and P2Y antagonists. This suggests that Pam3CSK4 activated platelets utilize the same pathway as FcγRII. Moreover, the authors show that ATP-ligation of P2X1 is of importance for further platelet activation after TLR2/1-activation, and that P2Y12 is the prominent ADP-receptor involved in adhesion and spreading. RANTES and MIF were secreted over time from platelets adhering to the coated surfaces, but no MIF was released upon stimulation with soluble Pam3CSK4. These results clarify the importance of TLR2/1 and FcγRII in platelet adhesion and activation, and strengthen the role of platelets as an active player in sensing bacterial infections.


Subject(s)
Blood Platelets/physiology , Receptors, IgG/metabolism , Receptors, Purinergic P2X1/metabolism , Receptors, Purinergic P2Y12/metabolism , Signal Transduction , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism , Biomimetics , Cell Adhesion , Cytokines/metabolism , Humans , Immunoglobulin G/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Platelet Activation , Protein-Tyrosine Kinases/metabolism , Syk Kinase , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL