Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38765987

ABSTRACT

Introduction Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.

2.
Genome Med ; 15(1): 86, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872640

ABSTRACT

BACKGROUND: As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. METHODS: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. RESULTS: For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. CONCLUSIONS: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing.


Subject(s)
Genetic Testing , Genetic Variation , Humans , Databases, Genetic , Genomics , Inheritance Patterns
3.
medRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066275

ABSTRACT

Background: As availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including as secondary findings. Methods: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. Results: For 36/65 gene-disease pairs, loss-of-function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using CardiacG2P as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. Conclusions: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is pre-requisite for scalable genomic testing.

4.
Genet Med ; 23(11): 2150-2159, 2021 11.
Article in English | MEDLINE | ID: mdl-34345024

ABSTRACT

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Subject(s)
Intellectual Disability , Microcephaly , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mice , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Dyrk Kinases
5.
Circulation ; 144(1): 7-19, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33947203

ABSTRACT

BACKGROUND: Each of the cardiomyopathies, classically categorized as hypertrophic cardiomyopathy, dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy, has a signature genetic theme. Hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are largely understood as genetic diseases of sarcomere or desmosome proteins, respectively. In contrast, >250 genes spanning >10 gene ontologies have been implicated in DCM, representing a complex and diverse genetic architecture. To clarify this, a systematic curation of evidence to establish the relationship of genes with DCM was conducted. METHODS: An international panel with clinical and scientific expertise in DCM genetics evaluated evidence supporting monogenic relationships of genes with idiopathic DCM. The panel used the Clinical Genome Resource semiquantitative gene-disease clinical validity classification framework with modifications for DCM genetics to classify genes into categories on the basis of the strength of currently available evidence. Representation of DCM genes on clinically available genetic testing panels was evaluated. RESULTS: Fifty-one genes with human genetic evidence were curated. Twelve genes (23%) from 8 gene ontologies were classified as having definitive (BAG3, DES, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN) or strong (DSP) evidence. Seven genes (14%; ACTC1, ACTN2, JPH2, NEXN, TNNI3, TPM1, VCL) including 2 additional ontologies were classified as moderate evidence; these genes are likely to emerge as strong or definitive with additional evidence. Of these 19 genes, 6 were similarly classified for hypertrophic cardiomyopathy and 3 for arrhythmogenic right ventricular cardiomyopathy. Of the remaining 32 genes (63%), 25 (49%) had limited evidence, 4 (8%) were disputed, 2 (4%) had no disease relationship, and 1 (2%) was supported by animal model data only. Of the 16 evaluated clinical genetic testing panels, most definitive genes were included, but panels also included numerous genes with minimal human evidence. CONCLUSIONS: In the curation of 51 genes, 19 had high evidence (12 definitive/strong, 7 moderate). It is notable that these 19 genes explain only a minority of cases, leaving the remainder of DCM genetic architecture incompletely addressed. Clinical genetic testing panels include most high-evidence genes; however, genes lacking robust evidence are also commonly included. We recommend that high-evidence DCM genes be used for clinical practice and that caution be exercised in the interpretation of variants in variable-evidence DCM genes.


Subject(s)
Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Evidence-Based Medicine/methods , Expert Testimony/methods , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Evidence-Based Medicine/standards , Expert Testimony/standards , Genetic Testing/standards , Humans
6.
J Mol Diagn ; 23(5): 589-598, 2021 05.
Article in English | MEDLINE | ID: mdl-33631351

ABSTRACT

Diagnostic laboratories gather phenotypic data through requisition forms, but there is no consensus as to which data are essential for variant interpretation. The ClinGen Cardiomyopathy Variant Curation Expert Panel defined a phenotypic data set for hypertrophic cardiomyopathy (HCM) variant interpretation, with the goal of standardizing requisition forms. Phenotypic data elements listed on requisition forms from nine leading cardiomyopathy testing laboratories were compiled to assess divergence in data collection. A pilot of 50 HCM cases was implemented to determine the feasibility of harmonizing data collection. Laboratory directors were surveyed to gauge potential for adoption of a minimal data set. Wide divergence was observed in the phenotypic data fields in requisition forms. The 50-case pilot showed that although demographics and assertion of a clinical diagnosis of HCM had 86% to 98% completion, specific phenotypic features, such as degree of left ventricular hypertrophy, ejection fraction, and suspected syndromic disease, were completed only 24% to 44% of the time. Nine data elements were deemed essential for variant classification by the expert panel. Participating laboratories unanimously expressed a willingness to adopt these data elements in their requisition forms. This study demonstrates the value of comparing and sharing best practices through an expert group, such as the ClinGen Program, to enhance variant interpretation, providing a foundation for leveraging cumulative case-level data in public databases and ultimately improving patient care.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Databases, Genetic , Genetic Testing/methods , Genetic Variation , Genome, Human , Genomics/methods , Adult , Female , Humans , Male , Middle Aged , Phenotype , Retrospective Studies
7.
Hum Genet ; 140(2): 289-297, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32627054

ABSTRACT

Whole exome sequencing (WES)-based assays undergo rigorous validation before being implemented in diagnostic laboratories. This validation process generates experimental evidence that allows laboratories to predict the performance of the intended assay. The NA12878 Genome in a Bottle (GIAB) HapMap reference sample is commonly used for validation in diagnostic laboratories. We investigated what data points should be taken into consideration when validating WES-based assays using the GIAB reference in a diagnostic setting. We delineate specific factors that require special consideration and identify OMIM genes associated with diseases that may 'bypass' validation. Four replicates of the NA12878 sample were sequenced at the CHEO Genetics Diagnostic Laboratory on a NextSeq 500; the data were analyzed using the bcbio_nexgen v1.1.2 pipeline. The hap.py validation engine, Real Time Genomics vcfeval tool, and high confidence (HC) variant calls in HC regions available for the GIAB sample were used to validate the obtained variant calls. The same validation process was then used to evaluate variant calls obtained for the same sample by two other clinical diagnostic laboratories. We showed that variant calls in NA12878 can be confidently measured only in the regions that intersect between the GIAB HC regions and the target regions of exome capture. Of the 4139 (as of October 2019) OMIM genes associated with a phenotype and having a known molecular basis of disease, 84 were fully outside of the GIAB HC regions and many of the remaining OMIM genes were only partially covered by the HC regions. A significant proportion of variants identified in the NA12878 sample outside of the HC regions have unknown (UNK) status due to the absence of HC reference alleles. Verification of such calls is possible either by an alternative truth set or by orthogonal testing. Similarly, many variants outside of exome capture regions, if not accounted for, will be deemed false negatives due to insufficient probe coverage. Our results demonstrate the importance of the intersection between genomic regions of interest, capture regions, and the high confidence regions. If not considered, false and ambiguous variant calls could have a negative impact on diagnostic accuracy of the intended WES-based diagnostic assay and increase the need for confirmatory testing. To enable laboratories to identify 'problematic' regions and optimize validation efforts, we have made our VCF and BED files available in UCSC Genome Browser: NA12878 WES Benchmark. Relevant genes and genome annotations are evolving, we implemented a general purpose algorithm to cross-reference OMIM genes with the genomic regions of interest that can be applied to capture genes/regions outside HC regions (see repository of data material section).


Subject(s)
Exome Sequencing/methods , Genome, Human/genetics , Alleles , Exome/genetics , Genetic Variation/genetics , Genomics/methods , Humans , Molecular Sequence Annotation/methods
8.
Nat Commun ; 11(1): 1990, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332749

ABSTRACT

Up-regulation of utrophin in muscles represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy. We previously demonstrated that eEF1A2 associates with the 5'UTR of utrophin A to promote IRES-dependent translation. Here, we examine whether eEF1A2 directly regulates utrophin A expression and identify via an ELISA-based high-throughput screen, FDA-approved drugs that upregulate both eEF1A2 and utrophin A. Our results show that transient overexpression of eEF1A2 in mouse muscles causes an increase in IRES-mediated translation of utrophin A. Through the assessment of our screen, we reveal 7 classes of FDA-approved drugs that increase eEF1A2 and utrophin A protein levels. Treatment of mdx mice with the 2 top leads results in multiple improvements of the dystrophic phenotype. Here, we report that IRES-mediated translation of utrophin A via eEF1A2 is a critical mechanism of regulating utrophin A expression and reveal the potential of repurposed drugs for treating DMD via this pathway.


Subject(s)
Muscular Dystrophy, Duchenne/drug therapy , Peptide Elongation Factor 1/antagonists & inhibitors , Protein Biosynthesis/drug effects , Utrophin/genetics , 5' Untranslated Regions/genetics , Animals , Betaxolol/pharmacology , Betaxolol/therapeutic use , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Internal Ribosome Entry Sites/genetics , Mice , Mice, Inbred mdx , Mice, Knockout , Muscular Dystrophy, Duchenne/genetics , Myoblasts , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Pravastatin/pharmacology , Pravastatin/therapeutic use , Protein Biosynthesis/genetics , Up-Regulation/drug effects , Utrophin/metabolism
9.
Mol Genet Genomic Med ; 8(1): e951, 2020 01.
Article in English | MEDLINE | ID: mdl-31568709

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy (LVH) in the absence of predisposing cardiovascular conditions. Pathogenic variants in at least 16 cardiac sarcomeric genes have been implicated in HCM, most of which act in a dominant-negative fashion. However loss-of-function (haploinsufficiency) is the most common disease mechanism for pathogenic variants in MYBPC3, suggesting that MYBPC3 complete deletion may play a role in HCM pathogenesis. Here, we investigate MYBPC3 complete deletion as a disease mechanism in HCM by analyzing two unrelated patients with confirmed diagnosis of HCM that tested negative by Sanger sequencing analysis. METHODS: MYBPC3 complete deletion was investigated by Multiplex ligation-dependent probe amplification (MLPA) and microarray analyses. The mechanism of deletion was investigated by interrogating the SINEBase database. RESULTS: Patient-1 was diagnosed with nonobstructive HCM in his mid-40s while undergoing assessment for palpitations, and patient-2 with obstructive HCM in his late-20s while undergoing systolic heart murmur assessment for an unrelated illness. MLPA testing revealed a heterozygous deletion of all MYBPC3 exons in both patients. Subsequent microarray testing confirmed these deletions which extended beyond the 5' and 3' ends of MYBPC3. Genomic assessment suggested that these deletions resulted from Alu/Alu-homologous recombination. CONCLUSION: Our results demonstrate that haploinsufficiency resulting from MYBPC3 complete deletion, potentially mediated by Alu recombination, is an important disease mechanism in cardiomyopathy and emphasizes the importance of copy number variation analysis in patients clinically suspected of HCM.


Subject(s)
Alu Elements , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Cardiomyopathy, Hypertrophic/pathology , Gene Deletion , Homologous Recombination , Humans , Male , Middle Aged
10.
J Mol Diagn ; 21(4): 602-611, 2019 07.
Article in English | MEDLINE | ID: mdl-31028938

ABSTRACT

A cohort of 1242 individuals tested in a clinical diagnostic laboratory was used to test whether the filtering allele frequencies (FAFs)-based framework, recently recommended for MHY7-associated cardiomyopathy, is extendable to 45 cardiomyopathy genes. Statistical analysis revealed a threshold of 0.00164% for the extreme outlier allele frequencies (AFs), based on the Genome Aggregation Database (exome fraction) total AFs of 138 unique pathogenic and likely pathogenic variants; 135 of them (97.8%) had AFs of <0.004%, the recommended threshold to apply moderate pathogenicity evidence for MYH7-associated cardiomyopathy. Of the 460 cases reported with only variant(s) of unknown clinical significance (VUCSs), 97 (21%) solely had VUCSs with FAFs >0.03%, frequencies above which were estimated herein as strong evidence against pathogenicity. Interestingly, 74.5% (172/231) of the unique VUCSs with FAFs >0.03% had Genome Aggregation Database maximum allele frequencies across all populations AFs >0.1%, deemed herein as stand-alone evidence against pathogenicity. Accordingly, using an FAF threshold of >0.1%, compared with AF >1%, led us to issue considerably more (25.9% versus 41.3%) negative patient reports. Also, 82.7% (N = 629) of the unique classified benign or likely benign variants with AFs <1% had FAFs >0.1%, reinforcing the use of this filtering strategy. Together, these data demonstrate that implementing FAF thresholds may considerably decrease the amount of variant interpretations and significantly reduce the cost of genetic testing for clinical genetic laboratories, without compromising the accuracy of genetic diagnostic services.


Subject(s)
Gene Frequency , Genetic Testing , Genetic Variation , Laboratories , Alleles , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cost-Benefit Analysis , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Humans
11.
J Med Genet ; 56(6): 408-412, 2019 06.
Article in English | MEDLINE | ID: mdl-30242101

ABSTRACT

BACKGROUND: Advances in molecular technologies and in-silico variant prediction tools offer wide-ranging opportunities in diagnostic settings, yet they also present with significant limitations. OBJECTIVE: Here, we contextualise the limitations of next-generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA) and in-silico prediction tools routinely used by diagnostic laboratories by reviewing specific experiences from our diagnostic laboratory. METHODS: We investigated discordant annotations and/or incorrect variant 'callings' in exons of 56 genes constituting our cardiomyopathy and connective tissue disorder NGS panels. Discordant variants and segmental duplications (SD) were queried using the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool and the University of California Santa Cruz genome browser, respectively, to identify regions of high homology. Discrepant variant analyses by in-silico models were re-evaluated using updated file entries. RESULTS: We observed a 5% error rate in MYH7 variant 'calling' using MLPA, which resulted from >90% homology of the MYH7 probe-binding site to MYH6. SDs were detected in TTN, PKP2 and MYLK. SDs in MYLK presented the highest risk (15.7%) of incorrect variant 'calling'. The inaccurate 'callings' and discrepant in-silico predictions were resolved following detailed investigation into the source of error. CONCLUSION: Recognising the limitations described here may help avoid incorrect diagnoses and leverage the power of new molecular technologies in diagnostic settings.


Subject(s)
Molecular Diagnostic Techniques , Molecular Medicine , Alleles , Computational Biology/methods , Disease Management , Gene Duplication , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Molecular Medicine/methods , Molecular Medicine/standards , Molecular Sequence Annotation
12.
Hum Mol Genet ; 25(1): 24-43, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26494902

ABSTRACT

Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and ß-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Heparin/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Ribonucleotides/therapeutic use , Utrophin/biosynthesis , Aminoimidazole Carboxamide/therapeutic use , Animals , Cell Line , Drug Therapy, Combination , Mice , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Signal Transduction/drug effects , Up-Regulation/drug effects , Utrophin/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Am J Med Genet C Semin Med Genet ; 169(4): 314-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26531771

ABSTRACT

Fractures in infancy or early childhood require prompt evaluation with consideration of accidental or non-accidental trauma as well as a large number of genetic disorders that predispose to fractures. Bone fragility has been reported in more than 100 genetic disorders, including skeletal dysplasias, inborn errors of metabolism and congenital insensitivity to pain. Most of these disorders are rare but often have distinctive clinical or radiographic findings to assist in the diagnosis. Gene sequencing is available, albeit connective tissue and skeletal dysplasia panels and biochemical studies are only helpful in a minority of cases. This article presents the clinical, radiographic, and molecular profiles of the most common heritable disorders other than osteogenesis imperfecta with increased bone fragility. In addition, the clinicians must consider non-heritable influences such as extreme prematurity, prenatal viral infection and neoplasia in the diagnostic process.


Subject(s)
Bone Diseases, Developmental/diagnostic imaging , Bone Diseases, Developmental/pathology , Bone and Bones/injuries , Fractures, Bone/etiology , Musculoskeletal Abnormalities/diagnostic imaging , Musculoskeletal Abnormalities/pathology , Bone Diseases, Developmental/genetics , Child , Child, Preschool , Diagnosis, Differential , Humans , Infant , Musculoskeletal Abnormalities/genetics , Radiography
14.
Eur J Hum Genet ; 23(11): 1482-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25920557

ABSTRACT

The dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) gene, located on chromosome 21q22.13 within the Down syndrome critical region, has been implicated in syndromic intellectual disability associated with Down syndrome and autism. DYRK1A has a critical role in brain growth and development primarily by regulating cell proliferation, neurogenesis, neuronal plasticity and survival. Several patients have been reported with chromosome 21 aberrations such as partial monosomy, involving multiple genes including DYRK1A. In addition, seven other individuals have been described with chromosomal rearrangements, intragenic deletions or truncating mutations that disrupt specifically DYRK1A. Most of these patients have microcephaly and all have significant intellectual disability. In the present study, we report 10 unrelated individuals with DYRK1A-associated intellectual disability (ID) who display a recurrent pattern of clinical manifestations including primary or acquired microcephaly, ID ranging from mild to severe, speech delay or absence, seizures, autism, motor delay, deep-set eyes, poor feeding and poor weight gain. We identified unique truncating and non-synonymous mutations (three nonsense, four frameshift and two missense) in DYRK1A in nine patients and a large chromosomal deletion that encompassed DYRK1A in one patient. On the basis of increasing identification of mutations in DYRK1A, we suggest that this gene be considered potentially causative in patients presenting with ID, primary or acquired microcephaly, feeding problems and absent or delayed speech with or without seizures.


Subject(s)
Down Syndrome/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Adolescent , Adult , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 21/genetics , Female , Humans , Intellectual Disability/physiopathology , Male , Microcephaly/physiopathology , Mutation , Phenotype , Dyrk Kinases
15.
RNA ; 19(8): 1019-37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23861535

ABSTRACT

Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.


Subject(s)
ELAV Proteins/genetics , ELAV Proteins/metabolism , Neurons/metabolism , Animals , ELAV Proteins/chemistry , ELAV-Like Protein 4 , Gene Expression Regulation, Developmental , Humans , Mice , Neurons/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
J Neurosci ; 32(33): 11164-75, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22895702

ABSTRACT

The RBP (RNA-binding protein) and Hu/ELAV family member HuD regulates mRNA metabolism of genes directly or indirectly involved in neuronal differentiation, learning and memory, and several neurological diseases. Given the important functions of HuD in a variety of processes, we set out to determine the mechanisms that promote HuD mRNA expression in neurons using a mouse model. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in developing neurons. Bioinformatic and 5'RACE (rapid amplification of cDNA ends) analyses of the 5' genomic flanking region identified eight conserved HuD leader exons (E1s), two of which are novel. Expression of all E1 variants was determined in mouse embryonic (E14.5) and adult brains. Sequential deletion of the 5' regulatory region upstream of the predominantly expressed E1c variant revealed a well conserved 400 bp DNA region that contains five E-boxes and is capable of directing HuD expression specifically in neurons. Using EMSA (electrophoretic mobility shift assay), ChIP (chromatin immunoprecipitation), and 5' regulatory region deletion and mutation analysis, we found that two of these E-boxes are targets of Neurogenin 2 (Ngn2) and that this mechanism is important for HuD mRNA induction. Together, our findings reveal that transcriptional regulation of HuD involves the use of alternate leader exons and Ngn2 mediates neuron-specific mRNA expression. To our knowledge, this is the first study to identify molecular events that positively regulate HuD mRNA expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , ELAV Proteins/genetics , Exons/genetics , Gene Expression Regulation, Developmental/physiology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , RNA, Messenger/genetics , Animals , Brain/cytology , Brain/embryology , Brain/metabolism , Cattle , Cell Line, Transformed , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Chromatin Immunoprecipitation , Computational Biology , Dactinomycin/pharmacology , E-Box Elements/drug effects , E-Box Elements/genetics , ELAV Proteins/metabolism , ELAV-Like Protein 4 , Electrophoretic Mobility Shift Assay , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutagenesis/physiology , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/ultrastructure , Protein Synthesis Inhibitors/pharmacology , Rats , Sequence Alignment
17.
Front Mol Neurosci ; 5: 36, 2012.
Article in English | MEDLINE | ID: mdl-22461767

ABSTRACT

The most characterized function of acetylcholinesterase (AChE) is to terminate cholinergic signaling at neuron-neuron and neuro-muscular synapses. In addition, AChE is causally or casually implicated in neuronal development, stress-response, cognition, and neurodegenerative diseases. Given the importance of AChE, many studies have focused on identifying the molecular mechanisms that govern its expression. Despite these efforts, post-transcriptional control of AChE mRNA expression is still relatively unclear. Here, we review the trans-acting factors and cis-acting elements that are known to control AChE pre-mRNA splicing, mature mRNA stability and translation. Moreover, since the Hu/ELAV family of RNA-binding proteins (RBPs) have emerged in recent years as "master" post-transcriptional regulators, we discuss the possibility that predominantly neuronal ELAVs (nELAVs) play multiple roles in regulating splicing, stability, localization, and translation of AChE mRNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...