Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Ned Tijdschr Tandheelkd ; 131(3): 107-110, 2024 Mar 05.
Article in Dutch, English | MEDLINE | ID: mdl-38975647

ABSTRACT

Tooth eruption disorders can have several different causes and treatment options. An 8-year-old boy's tooth 12 erupted in the position of tooth 11, and an 11-year-old girl's tooth 21 did not erupt. In both cases, an attempt was made to regulate the relevant tooth orthodontically, but ultimately it was found necessary to extract the tooth. Tooth replacement is possible with autotransplantation or prostheses. Implantology rarely is the first choice for young patients.


Subject(s)
Tooth Eruption , Humans , Child , Female , Male , Tooth Extraction/adverse effects
2.
Med Phys ; 49(8): 5347-5362, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35670033

ABSTRACT

PURPOSE: A clinical implementation of ion-beam radiography (iRad) is envisaged to provide a method for on-couch verification of ion-beam treatment plans. The aim of this work is to introduce and evaluate a method for quantitative water-equivalent thickness (WET) measurements for a specific helium-ion imaging system for WETs that are relevant for imaging thicker body parts in the future. METHODS: Helium-beam radiographs (αRads) are measured at the Heidelberg Ion-beam Therapy Center with an initial beam energy of 239.5 MeV/u. An imaging system based on three pairs of thin silicon pixel detectors is used for ion path reconstruction and measuring the energy deposition (dE) of each particle behind the object to be imaged. The dE behind homogeneous plastic blocks is related to their well-known WETs between 280.6 and 312.6 mm with a calibration curve that is created by a fit to measured data points. The quality of the quantitative WET measurements is determined by the uncertainty of the measured WET of a single ion (single-ion WET precision) and the deviation of a measured WET value to the well-known WET (WET accuracy). Subsequently, the fitted calibration curve is applied to an energy deposition radiograph of a phantom with a complex geometry. The spatial resolution (modulation transfer function at 10 % -MTF10% ) and WET accuracy (mean absolute percentage difference-MAPD) of the WET map are determined. RESULTS: In the optimal imaging WET-range from ∼280 to 300 mm, the fitted calibration curve reached a mean single-ion WET precision of 1.55 ± $\,{\pm}\,$ 0.00%. Applying the calibration to an ion radiograph (iRad) of a more complex WET distribution, the spatial resolution was determined to be MTF10% = 0.49 ± $\,{\pm}\,$ 0.03 lp/mm and the WET accuracy was assessed as MAPD to 0.21 %. CONCLUSIONS: Using a beam energy of 239.5 MeV/u and the proposed calibration procedure, quantitative αRads of WETs between ∼280 and 300 mm can be measured and show high potential for clinical use. The proposed approach with the resulting image qualities encourages further investigation toward the clinical application of helium-beam radiography.


Subject(s)
Helium , Water , Calibration , Ions , Phantoms, Imaging , Radiography
3.
Phys Med Biol ; 66(23)2021 11 29.
Article in English | MEDLINE | ID: mdl-34706355

ABSTRACT

This work provides a quantitative assessment of helium ion CT (HeCT) for particle therapy treatment planning. For the first time, HeCT based range prediction accuracy in a heterogeneous tissue phantom is presented and compared to single-energy x-ray CT (SECT), dual-energy x-ray CT (DECT) and proton CT (pCT). HeCT and pCT scans were acquired using the US pCT collaboration prototype particle CT scanner at the Heidelberg Ion-Beam Therapy Center. SECT and DECT scans were done with a Siemens Somatom Definition Flash and converted to RSP. A Catphan CTP404 module was used to study the RSP accuracy of HeCT. A custom phantom of 20 cm diameter containing several tissue equivalent plastic cubes was used to assess the spatial resolution of HeCT and compare it to DECT. A clinically realistic heterogeneous tissue phantom was constructed using cranial slices from a pig head placed inside a cylindrical phantom (ø150 mm). A proton beam (84.67 mm range) depth-dose measurement was acquired using a stack of GafchromicTM EBT-XD films in a central dosimetry insert in the phantom. CT scans of the phantom were acquired with each modality, and proton depth-dose estimates were simulated based on the reconstructions. The RSP accuracy of HeCT for the plastic phantom was found to be 0.3 ± 0.1%. The spatial resolution for HeCT of the cube phantom was 5.9 ± 0.4 lp cm-1for central, and 7.6 ± 0.8 lp cm-1for peripheral cubes, comparable to DECT spatial resolution (7.7 ± 0.3 lp cm-1and 7.4 ± 0.2 lp cm-1, respectively). For the pig head, HeCT, SECT, DECT and pCT predicted range accuracy was 0.25%, -1.40%, -0.45% and 0.39%, respectively. In this study, HeCT acquired with a prototype system showed potential for particle therapy treatment planning, offering RSP accuracy, spatial resolution, and range prediction accuracy comparable to that achieved with a commercial DECT scanner. Still, technical improvements of HeCT are needed to enable clinical implementation.


Subject(s)
Helium , Protons , Animals , Helium/therapeutic use , Phantoms, Imaging , Plastics , Swine , Tomography, X-Ray Computed , X-Rays
4.
Phys Med Biol ; 66(4): 045013, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33333496

ABSTRACT

Quality assurance in magnetic resonance (MR)-guided radiotherapy lacks anthropomorphic phantoms that represent tissue-equivalent imaging contrast in both computed tomography (CT) and MR imaging. In this study, we developed phantom materials with individually adjustable CT value as well as [Formula: see text]- and [Formula: see text]-relaxation times in MR imaging at three different magnetic field strengths. Additionally, their experimental stopping power ratio (SPR) for carbon ions was compared with predictions based on single- and dual-energy CT. Ni-DTPA doped agarose gels were used for individual adjustment of [Formula: see text] and [Formula: see text] at [Formula: see text] and 3.0 T. The CT value was varied by adding potassium chloride (KCl). By multiple linear regression, equations for the determination of agarose, Ni-DTPA and KCl concentrations for given [Formula: see text] [Formula: see text] and CT values were derived and employed to produce nine specific soft tissue samples. Experimental [Formula: see text] [Formula: see text] and CT values of these soft tissue samples were compared with predictions and additionally, carbon ion SPR obtained by range measurements were compared with predictions based on single- and dual-energy CT. The measured CT value, [Formula: see text] and [Formula: see text] of the produced soft tissue samples agreed very well with predictions based on the derived equations with mean deviations of less than [Formula: see text] While single-energy CT overestimates the measured SPR of the soft tissue samples, the dual-energy CT-based predictions showed a mean SPR deviation of only [Formula: see text] To conclude, anthropomorphic phantom materials with independently adjustable CT values as well as [Formula: see text] and [Formula: see text] relaxation times at three different magnetic field strengths were developed. The derived equations describe the material specific relaxation times and the CT value in dependence on agarose, Ni-DTPA and KCl concentrations as well as the chemical composition of the materials based on given [Formula: see text] and CT value. Dual-energy CT allows accurate prediction of the carbon ion range in these materials.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Tomography, X-Ray Computed/instrumentation , Magnetic Fields , Radiotherapy, Image-Guided
5.
Phys Rev E ; 102(4-1): 043311, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212582

ABSTRACT

A robust impurity detection and tracking code, able to generate large sets of dust tracks from tokamak camera footage, is presented. This machine learning-based code is tested with cameras from the Joint European Torus, Doublet-III-D, and Magnum-PSI and is able to generate dust tracks with a 65-100% classification accuracy. Moreover, the number dust particles detected from a single camera shot can be up to the order of 1000. Several areas of improvement for the code are highlighted, such as generating more significant training data sets and accounting for selection biases. Although the code is tested with dust in single two-dimensional camera views, it could easily be applied to multiple-camera stereoscopic reconstruction or nondust impurities.

6.
Phys Med Biol ; 65(5): 055002, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31962302

ABSTRACT

Recently, it has been proposed that a mixed helium/carbon beam could be used for online monitoring in carbon ion beam therapy. Fully stripped, the two ion species exhibit approximately the same mass/charge ratio and hence could potentially be accelerated simultaneously in a synchrotron to the same energy per nucleon. At the same energy per nucleon, helium ions have about three times the range of carbon ions, which could allow for simultaneous use of the carbon ion beam for treatment and the helium ion beam for imaging. In this work, measurements and simulations of PMMA phantoms as well as anthropomorphic phantoms irradiated sequentially with a helium ion and a carbon ion beam at equal energy per nucleon are presented. The range of the primary helium ion beam and the fragment tail of the carbon ion beam exiting the phantoms were detected using a novel range telescope made of thin plastic scintillator sheets read out by a flat-panel CMOS sensor. A 10:1 carbon to helium mixing ratio is used, generating a helium signal well above the carbon fragment background while adding little to the dose delivered to the patient. The range modulation of a narrow air gap of 1 mm thickness in the PMMA phantom that affects less than a quarter of the particles in a pencil beam were detected, demonstrating the achievable relative sensitivity of the presented method. Using two anthropomorphic pelvis phantoms it is shown that small rotations of the phantom as well as simulated bowel gas movements cause detectable changes in the helium/carbon beam exiting the phantom. The future prospects and limitations of the helium/carbon mixing as well as its technical feasibility are discussed.


Subject(s)
Heavy Ion Radiotherapy/methods , Helium/therapeutic use , Carbon/therapeutic use , Heavy Ion Radiotherapy/instrumentation , Humans , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Telescopes
7.
Analyst ; 145(6): 2345-2356, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-31993615

ABSTRACT

The use of nanoparticles (NP) as dose enhancers in radiotherapy (RT) is a growing research field. Recently, the use of NP has been extended to charged particle therapy in order to improve the performance in radioresistant tumors. However, the biological mechanisms underlying the synergistic effects involved in NP-RT approaches are not clearly understood. Here, we used the capabilities of synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) as a bio-analytical tool to elucidate the NP-induced cellular damage at the molecular level and at a single-cell scale. F98 glioma cells doped with AuNP and GdNP were irradiated using several types of medical ion beams (proton, helium, carbon and oxygen). Differences in cell composition were analyzed in the nucleic acids, protein and lipid spectral regions using multivariate methods (Principal Component Analysis, PCA). Several NP-induced cellular modifications were detected, such as conformational changes in secondary protein structures, intensity variations in the lipid CHx stretching bands, as well as complex DNA rearrangements following charged particle therapy irradiations. These spectral features seem to be correlated with the already shown enhancement both in the DNA damage response and in the reactive oxygen species (ROS) production by the NP, which causes cell damage in the form of protein, lipid, and/or DNA oxidations. Vibrational features were NP-dependent due to the NP heterogeneous radiosensitization capability. Our results provided new insights into the molecular changes in response to NP-based RT treatments using ion beams, and highlighted the relevance of SR-FTIRM as a useful and precise technique for assessing cell response to innovative radiotherapy approaches.


Subject(s)
Metal Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Animals , Cell Line, Tumor , Gadolinium/chemistry , Gadolinium/radiation effects , Light , Lipids/chemistry , Metal Nanoparticles/radiation effects , Microspectrophotometry/methods , Microspectrophotometry/statistics & numerical data , Nucleic Acid Conformation/drug effects , Nucleic Acids/chemistry , Nucleic Acids/drug effects , Principal Component Analysis , Protein Conformation/drug effects , Proteins/chemistry , Proteins/drug effects , Radiation-Sensitizing Agents/radiation effects , Rats , Silver/chemistry , Silver/radiation effects , Synchrotrons
8.
Phys Med Biol ; 65(4): 045015, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31365915

ABSTRACT

A new practical method to determine the ion recombination correction factor (k s ) for plane-parallel and Farmer-type cylindrical chambers in particle beams is investigated. Experimental data were acquired in passively scattered and scanned particle beams and compared with theoretical models developed by Boag and/or Jaffé. The new method, named the three-voltage linear method (3VL-method), is simple and consists of determining the saturation current using the current measured at three voltages in a linear region and dividing it by the current at the operating voltage (V) (even if it is not in the linear region) to obtain k s . For plane-parallel chambers, comparing k s -values obtained by model fits to values obtained using the 3VL-method, an excellent agreement is found. For cylindrical chambers, recombination is due to volume recombination only. At low voltages, volume recombination is too large and Boag's models are not applicable. However, for Farmer-type chambers (NE2571), using a smaller voltage range, limited down to 100 V, we observe a linear variation of k s with 1/V 2 or 1/V for continuous or pulsed beams, respectively. This linearity trend allows applying the 3VL-method to determine k s at any polarizing voltage. For the particle beams used, the 3VL-method gives an accurate determination of k s at any polarizing voltage. The choice of the three voltages must to be done with care to ensure to be in a linear region. For Roos-type or Markus-type chambers (i.e. chambers with an electrode spacing of 2 mm) and NE2571 chambers, the use of the 3VL-method with 300 V, 200 V and 150 V is adequate. A difference with the 2V-method and some 3V-methods in the literature is that in the 3VL-method the operational voltage does not have to be one of the three voltages. An advantage over a 2V-method is that the 3VL-method can inherently verify if the linearity condition is fulfilled.


Subject(s)
Light , Protons , Radiometry/instrumentation , Linear Models , Scattering, Radiation
9.
Cancer Manag Res ; 11: 8327-8335, 2019.
Article in English | MEDLINE | ID: mdl-31686914

ABSTRACT

BACKGROUND: Considering the increasing simultaneous application of magnetic resonance imaging (MRI) for more precise photon radiotherapy, it will be likely for particle radiotherapy to adopt MRI for future image guiding. It will then be imperative to evaluate the potential biological effects of a magnetic field (MF) on particle irradiation. This study explores such effects on the highly radiosensitive TK6 lymphoblastoid human cell line. METHODS: The following three parameters were measured after irradiation with either carbon ion or proton beams using spread out Bragg peaks and applying different doses within a perpendicular 1.0 T MF: (1) cell survival fraction (14 days postirradiation), (2) treatment-specific apoptosis, which was determined through the measurement of population in the sub-G1 phase, and (3) cell cycle progression by means of flow cytometry. These were compared to the same parameters measured without an MF. RESULTS: The clonogenic assay in both treatment groups showed almost identical survival curves with overlapping error bars. The calculated α values with and without an MF were 2.18 (σ=0.245) and 2.17 (σ=0.234) for carbon ions and 1.08 (σ=0.138) and 1.13 (σ=0.0679) for protons, respectively. Similarly, the treatment-specific apoptosis and cell cycle progression showed almost identical curves with overlapping error bars. A two-sample, unpooled t-test analysis was implemented for comparison of all mean values and showed p-values >0.05. CONCLUSION: No statistically significant difference in biological response of the TK6 cells was observed when they were irradiated using spreadout Bragg peaks within a perpendicular 1.0 T MF as compared to those, which received the same dose without the MF. This should serve as another supporting piece of evidence toward the implementation of MRI in particle radiotherapy, though further research is necessary.

10.
Clin Transl Radiat Oncol ; 17: 51-56, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31211251

ABSTRACT

BACKGROUND: The role of radiotherapy in malignant melanoma is still in discussion due to its relative resistance to radiation. In various literature, heavy ions show a higher relative biological effectiveness than photons. The aim of this work is to evaluate the radiotherapeutical effect from photons as well as heavy ions on malignant melanoma cells and to indicate the possible radiosensitivity based on its proliferation-inhibitory effect. METHODS: Two different cell lines of malignant melanoma, WM115 (primary tumor) and WM266-4 (metastatic site, skin) were used in this in vitro study. The cells were treated with photons or heavy ions (C12 and O16 ions). Cell-proliferation assay using hemocytometer was used for the quantitative and qualitative evaluation of cell growth. Furthermore, flow cytometry was also used to analyze the cell cycle distribution. RESULTS: Heavy ions compared to photons and between the two heavy ion modalities, O16 ions showed an improved suppression of cell growth in both cell lines. Furthermore, a G2/M arrest was detected in both cell lines after all radiotherapy modalities - with the arrest increasing with the dose applied. CONCLUSION: Heavy ions showed a greater inhibitory effect on cell proliferation compared to photons and an increased G2/M arrest. Therefore, C12 and O16 heavy ions might overcome the relative radioresistance of malignant melanoma to photons. Further research is warranted.

11.
Radiat Oncol ; 14(1): 11, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30654822

ABSTRACT

BACKGROUND: The implementation of magnetic resonance imaging (MRI) guided radiotherapy (RT) continues to increase. Very limited in-vitro data on the interaction of ionizing radiation and magnetic fields (MF) have been published. In these experiments we focused on the radiation response in a MF of the TK6 human lymphoblastoid cells which are known to be highly radiosensitive due to efficient radiation-induced apoptosis. METHODS: Clonogenicity was determined 12-14 days after irradiation with 1-4 Gy 6 MV photons with or without a 1.0 Tesla MF. Furthermore, alterations in cell cycle distribution and rates of radiation induced apoptosis (FACS analysis of cells with sub-G1 DNA content) were analyzed. RESULTS: Clonogenic survival showed an exponential dose-dependence, and the radiation sensitivity parameter (α = 1.57/Gy) was in accordance with earlier reports. Upon comparing the clonogenic survival between the two groups, identical results within error bars were obtained. The survival fractions at 2 Gy were 9% (without MF) and 8.5% (with MF), respectively. CONCLUSION: A 1.0 Tesla MF does not affect the clonogenicity of TK6 cells irradiated with 1-4 Gy 6MV photons. This supports the use of MRI guided RT, however ongoing research on the interaction of MF and radiotherapy is warranted.


Subject(s)
Apoptosis/radiation effects , Cell Cycle , Lymphocytes/cytology , Lymphocytes/radiation effects , Magnetic Fields , Photons , Cell Survival , Cells, Cultured , Colony-Forming Units Assay , Humans
12.
Phys Med Biol ; 62(19): 7798-7813, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28841579

ABSTRACT

Nowadays there is a rising interest towards exploiting new therapeutical beams beyond carbon ions and protons. In particular, [Formula: see text]O ions are being widely discussed due to their increased LET distribution. In this contribution, we report on the first experimental verification of biologically optimized treatment plans, accounting for different biological effects, generated with the TRiP98 planning system with [Formula: see text]O beams, performed at HIT and GSI. This implies the measurements of 3D profiles of absorbed dose as well as several biological measurements. The latter includes the measurements of relative biological effectiveness along the range of linear energy transfer values from ≈20 up to ≈750 keV µ [Formula: see text], oxygen enhancement ratio values and the verification of the kill-painting approach, to overcome hypoxia, with a phantom imitating an unevenly oxygenated target. With the present implementation, our treatment planning system is able to perform a comparative analysis of different ions, according to any given condition of the target. For the particular cases of low target oxygenation, [Formula: see text]O ions demonstrate a higher peak-to-entrance dose ratio for the same cell killing in the target region compared to [Formula: see text]C ions. Based on this phenomenon, we performed a short computational analysis to reveal the potential range of treatment plans, where [Formula: see text]O can benefit over lighter modalities. It emerges that for more hypoxic target regions (partial oxygen pressure of ≈0.15% or lower) and relatively low doses (≈4 Gy or lower) the choice of [Formula: see text]O over [Formula: see text]C or [Formula: see text]He may be justified.


Subject(s)
Oxygen/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Linear Energy Transfer , Phantoms, Imaging , Relative Biological Effectiveness
13.
Phys Med Biol ; 62(16): 6784-6803, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28762335

ABSTRACT

In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.


Subject(s)
Helium/therapeutic use , Monte Carlo Method , Radiometry , Radiotherapy Planning, Computer-Assisted , Carbon/therapeutic use , Humans , Normal Distribution , Proton Therapy , Radiotherapy Dosage , Water
14.
Phys Med Biol ; 62(16): 6579-6594, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28650846

ABSTRACT

The introduction of 'new' ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.


Subject(s)
Heavy Ion Radiotherapy , Helium/therapeutic use , Monte Carlo Method , Oxygen/therapeutic use , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Water , Humans , Radiometry , Relative Biological Effectiveness
15.
Phys Med Biol ; 62(13): 5365-5382, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28504642

ABSTRACT

Based on international reference dosimetry protocols for light-ion beams, a correction factor (k s) has to be applied to the response of a plane-parallel ionisation chamber, to account for recombination of negative and positive charges in its air cavity before these charges can be collected on the electrodes. In this work, k s for IBA PPC40 Roos-type chambers is investigated in four scanned light-ion beams (proton, helium, carbon and oxygen). To take into account the high dose-rates used with scanned beams and LET-values, experimental results are compared to a model combining two theories. One theory, developed by Jaffé, describes the variation of k s with the ionization density within the ion track (initial recombination) and the other theory, developed by Boag, describes the variation of k s with the dose rate (volume recombination). Excellent agreement is found between experimental and theoretical k s-values. All results confirm that k s cannot be neglected. The solution to minimise k s is to use the ionisation chamber at high voltage. However, one must be aware that charge multiplication may complicate the interpretation of the measurement. For the chamber tested, it was found that a voltage of 300 V can be used without further complication. As the initial recombination has a logarithmic variation as a function of 1/V, the two-voltage method is not applicable to these scanned beams.


Subject(s)
Radiation Dosage , Radiometry/instrumentation , Linear Energy Transfer
16.
Phys Med Biol ; 62(10): 3958-3982, 2017 05 21.
Article in English | MEDLINE | ID: mdl-28406796

ABSTRACT

At the Heidelberg Ion Beam Therapy Center, scanned helium and oxygen ion beams are available in addition to the clinically used protons and carbon ions for physical and biological experiments. In this work, a study of the basic dosimetric features of the different ions is performed in the entire therapeutic energy range. Depth dose distributions are investigated for pencil-like beam irradiation, with and without a modulating ripple filter, focusing on the extraction of key Bragg curve parameters, such as the range, the peak-width and the distal 80%-20% fall-off. Pencil-beam lateral profiles are measured at different depths in water, and parameterized with multiple Gaussian functions. A more complex situation of an extended treatment field is analyzed through a physically optimized spread-out Bragg peak, delivered with beam scanning. The experimental results of this physical beam characterization indicate that helium ions could afford a more conformal treatment and in turn, increased tumor control. This is mainly due to a smaller lateral scattering than with protons, leading to better lateral and distal fall-off, as well as a lower fragmentation tail compared to carbon and oxygen ions. Moreover, the dosimetric dataset can be used directly for comparison with results from analytical dose engines or Monte Carlo codes. Specifically, it was used at the Heidelberg Ion Beam Therapy Center to generate a new input database for a research analytical treatment planning system, as well as for validation of a general purpose Monte Carlo program, in order to lay the groundwork for biological experiments and further patient planning studies.


Subject(s)
Carbon/therapeutic use , Helium/therapeutic use , Oxygen/therapeutic use , Proton Therapy , Radiometry/methods , Monte Carlo Method , Normal Distribution , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
17.
Phys Med Biol ; 62(6): 2033-2054, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28212111

ABSTRACT

Until now, the dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as that of high-energy photons. This is mainly caused by the approximately threefold larger uncertainty of the k Q factor of ionization chambers, which, due to the lack of experimental data, is still derived by calculations. Measurements of absorbed dose to water, D w, by means of water calorimetry have now been performed in the entrance channel of a scanned 6 cm × 6 cm radiation field of 429 MeV/u carbon ions, allowing the direct calibration of ionization chambers and thus the experimental determination of k Q. Within this work, values for k Q have been determined for the Farmer-type ionization chambers FC65-G and TM30013. A detailed investigation of the radiation field enabled the accurate determination of correction factors needed for both calorimetric and ionometric measurements. Finally, a relative standard measurement uncertainty of 0.8% (k = 1) could be achieved for the experimental k Q values. For both chambers, the experimental k Q factors were found to be about 1% larger than those tabulated in the German DIN 6801-1 protocol, whereas compared to the theoretical values stated in the TRS-398 protocol, the experimental k Q value agrees within 0.4% for the TM30013 chamber but is about 1% lower in the case of the FC65-G chamber.


Subject(s)
Calorimetry/methods , Heavy Ion Radiotherapy , Phantoms, Imaging , Photons , Radiometry/methods , Water/chemistry , Calibration , Calorimetry/instrumentation , Humans , Radiation Dosage , Radiometry/instrumentation , Radiotherapy Dosage
18.
Phys Med Biol ; 62(4): 1310-1326, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28114125

ABSTRACT

Recently, the use of 4He particles in cancer radiotherapy has been reconsidered as they potentially represent a good compromise between protons and 12C ions. The first step to achieve this goal is the development of a dedicated treatment planning system, for which basic physics information such as the characterization of the beam lateral scattering and fragmentation cross sections are required. In the present work, the attenuation of 4He primary particles and the build-up of secondary charged fragments at various depths in water and polymethyl methacrylate were investigated experimentally for 120 and 200 MeV u-1 beams delivered by the synchrotron at the Heidelberg Ion-Beam Therapy Center, Heidelberg. Species and isotope identification was accomplished combining energy loss and time-of-flight measurements. Differential yields and energy spectra of all fragments types were recorded between 0° and 20° with respect to the primary beam direction.


Subject(s)
Helium/chemistry , Helium/therapeutic use , Polymethyl Methacrylate/chemistry , Radiotherapy Planning, Computer-Assisted/methods , Synchrotrons/instrumentation , Water/chemistry , Humans , Relative Biological Effectiveness
19.
Phys Med Biol ; 60(21): 8525-47, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26485618

ABSTRACT

We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope. The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom. The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5 mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTA = 1.3 mm and RWET = 1.3%. A special interpolation method allows to strongly reduce the dose by using a coarser grid of the measured beam spot position with a 5 times larger grid distance. We show that despite a dose reduction of 25 times (leading to a dose of 0.016 mGy for the current imaging set-up), the image quality of the optimized radiographies remains fairly unaffected for both the simulated and experimental case.


Subject(s)
Image Processing, Computer-Assisted/methods , Protons , Tomography, X-Ray Computed/methods
20.
Phys Med Biol ; 60(18): 7151-63, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26334387

ABSTRACT

For regular quality assurance and patient-specific dosimetric verification under non-horizontal gantry angles in ion beam radiotherapy, we developed and commissioned a motorized solid state phantom. The phantom is set up under the selected gantry angle and moves an array of 24 ionization chambers to the measurement position by means of three eccentrically-mounted cylinders. Hence, the phantom allows 3D dosimetry at oblique gantry angles. To achieve the high standards in dosimetry, the mechanical and dosimetric accuracy of the phantom was investigated and corrections for residual uncertainties were derived. Furthermore, the exact geometry as well as a coordinate transformation from cylindrical into Cartesian coordinates was determined. The developed phantom proved to be suitable for quality assurance and 3D-dose verifications for proton- and carbon ion treatment plans at oblique gantry angles. Comparing dose measurements with the new phantom under oblique gantry angles with those in a water phantom and horizontal beams, the dose deviations averaged over the 24 ionization chambers were within 1.5%. Integrating the phantom into the HIT treatment plan verification environment, allows the use of established workflow for verification measurements. Application of the phantom increases the safety of patient plan application at gantry beam lines.


Subject(s)
Heavy Ion Radiotherapy , Phantoms, Imaging , Proton Therapy , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Humans , Quality Assurance, Health Care , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...