Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Viruses ; 16(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675958

ABSTRACT

Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.


Subject(s)
Animals, Zoo , COVID-19 , SARS-CoV-2 , Tigers , Animals , Dogs , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , COVID-19/transmission , COVID-19/epidemiology , COVID-19/veterinary , COVID-19/virology , Tigers/virology , Cats , Animals, Zoo/virology , England/epidemiology , Humans , Phylogeny , Dog Diseases/virology , Dog Diseases/epidemiology , Dog Diseases/transmission , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology
2.
Vaccine ; 42(3): 653-661, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38143198

ABSTRACT

Although commercial vaccines against Newcastle Disease have been available for decades, outbreaks still occur in the face of vaccination Further vaccination may accelerate viral evolution resulting in a further reduction in vaccine efficacy. A key question is whether genotype-matched vaccines can confer better protection against contemporary type 1 Avian Paramyxoviruses. To assess this, an in vivo vaccine-challenge study was undertaken to assess protection afforded by 'genotype-matched' and commercial vaccine formulations. Groups of chickens were vaccinated twice (prime-boost) with an inactivated preparation of either La Sota Clone 30, AV632-chicken-Cyprus-13 (genotype VII.2), or mock vaccine, and later challenged with virulent AV632-chicken-Cyprus-13. Post vaccinal serological responses differed, although both vaccination/challenge groups showed similar levels of clinical protection compared to the unvaccinated group, where 100 % mortality was observed. Shedding was significantly reduced in the vaccinated groups compared to the unvaccinated group. Virus dissemination in the tissues of vaccinated birds was comparable, but onset of infection was delayed. Two mutations were observed in the HN gene of the heterologous vaccine group; H199N and I192M, the latter thought to be associated with increased fusogenic potential. These data demonstrate that existing vaccine formulations confer similar levels of clinical protection to contemporary strains and that the antigenic heterogeneity of circulating strains does not impact upon shedding profiles in immunised birds. In conclusion, the ability of virulent APMV-1 to cause disease in vaccinated flocks is unlikely to be the result of antigenic mismatch alone, and other factors likely contribute to vaccination failure and breakthrough.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Chickens , Newcastle disease virus/genetics , Newcastle Disease/prevention & control , Vaccination/veterinary , Genotype , Research Design , Virus Shedding , Antibodies, Viral , Poultry Diseases/prevention & control
3.
Emerg Infect Dis ; 29(9): 1798-1807, 2023 09.
Article in English | MEDLINE | ID: mdl-37610158

ABSTRACT

We investigated the infection dynamics of 2 influenza A(H1N1) virus isolates from the swine 1A.3.3.2 (pandemic 2009) and 1C (Eurasian, avian-like) lineages. The 1C-lineage virus, A/Pavia/65/2016, although phylogenetically related to swine-origin viruses, was isolated from a human clinical case. This strain infected ferrets, a human influenza model species, and could be transmitted by direct contact and, less efficiently, by airborne exposure. Infecting ferrets and pigs (the natural host) resulted in mild or inapparent clinical signs comparable to those observed with 1A.3.3.2-lineage swine-origin viruses. Both H1N1 viruses could infect pigs and were transmitted to cohoused ferrets. Ferrets vaccinated with a human 2016-17 seasonal influenza vaccine were protected against infection with the antigenically matched 1A pandemic 2009 virus but not against the swine-lineage 1C virus. Our results reaffirm the need for continuous influenza A virus surveillance in pigs and identification of candidate human vaccine viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Swine , Influenza, Human/prevention & control , Ferrets , Influenza A Virus, H1N1 Subtype/genetics , Seasons , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Influenza A virus/genetics
4.
Epidemiol Infect ; 151: e163, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37622315

ABSTRACT

Newcastle disease (ND) is a notifiable disease affecting chickens and other avian species caused by virulent strains of Avian paramyxovirus type 1 (APMV-1). While outbreaks of ND can have devastating consequences, avirulent strains of APMV-1 generally cause subclinical infections or mild disease. However, viruses can cause different levels of disease in different species and virulence can evolve following cross-species transmission events. This report describes the detection of three cases of avirulent APMV-1 infection in Great Britain (GB). Case 1 emerged from the 'testing to exclude' scheme in chickens in Shropshire while cases 2 and 3 were made directly from notifiable avian disease investigations in chicken broilers in Herefordshire and on premises in Wiltshire containing ducks and mixed species, respectively). Class II/genotype I.1.1 APMV-1 from case 1 shared 99.94% identity to the Queensland V4 strain of APMV-1. Class II/genotype II APMV-1 was detected from case 2 while the class II/genotype I.2 virus from case 3 aligned closely with strains isolated from Anseriformes. Exclusion of ND through rapid detection of avirulent APMV-1 is important where clinical signs caused by avirulent or virulent APMV-1s could be ambiguous. Understanding the diversity of APMV-1s circulating in GB is critical to understanding disease threat from these adaptable viruses.


Subject(s)
Bird Diseases , Newcastle Disease , Animals , Chickens , United Kingdom/epidemiology , Newcastle disease virus/genetics , Newcastle Disease/epidemiology , Newcastle Disease/diagnosis , Phylogeny
5.
Viruses ; 15(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36851750

ABSTRACT

Newcastle Disease (ND), caused by virulent forms of Avian orthoavulavirus serotype-1 (AOAV-1) is an economically important avian disease worldwide. The past two incursions of ND into the United Kingdom occurred in game bird populations during 2005 and 2006. The nature of the game bird semi-feral rearing system, which can bring these birds into close contact with both wild birds and commercial or backyard poultry, has been hypothesized to act as a bridge between these two environments. As such, the risk that AOAV-1-infected game birds may pose to the UK poultry industry was investigated. Pheasants, partridges and chickens were experimentally infected with the virulent strain APMV-1/Chicken/Bulgaria/112/13, a genotype VII.2 virus associated with ND outbreaks in Eastern Europe. The study demonstrated that both chickens and pheasants are susceptible to infection with APMV-1/Chicken/Bulgaria/112/13, which results in high mortality and onward transmission. Partridges by contrast are susceptible to infection, but mortality was reduced, as was onward transmission. However, the data indicated that both pheasants and partridges may serve as intermediate hosts of AOAV-1 and may bridge the wild bird-domestic poultry interface enabling transmission into an economically damaging environment where morbidity and mortality may be high.


Subject(s)
Galliformes , Newcastle Disease , Animals , Poultry , Chickens , Quail , Newcastle disease virus/genetics , Genotype
6.
One Health ; 16: 100492, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36710856

ABSTRACT

Natural cases of zooanthroponotic transmission of SARS-CoV-2 to animals have been reported during the COVID-19 pandemic, including to free-ranging white-tailed deer (Odocoileus virginianus) in North America and farmed American mink (Neovison vison) on multiple continents. To understand the potential for angiotensin-converting enzyme 2 (ACE2)-mediated viral tropism we characterised the distribution of ACE2 receptors in the respiratory and intestinal tissues of a selection of wild and semi-domesticated mammals including artiodactyls (cervids, bovids, camelids, suids and hippopotamus), mustelid and phocid species using immunohistochemistry. Expression of the ACE2 receptor was detected in the bronchial or bronchiolar epithelium of several European and Asiatic deer species, Bactrian camel (Camelus bactrianus), European badger (Meles meles), stoat (Mustela erminea), hippopotamus (Hippopotamus amphibious), harbor seal (Phoca vitulina), and hooded seal (Cystophora cristata). Further receptor mapping in the nasal turbinates and trachea revealed sparse ACE2 receptor expression in the mucosal epithelial cells and occasional occurrence in the submucosal glandular epithelium of Western roe deer (Capreolus capreolus), moose (Alces alces alces), and alpaca (Vicunga pacos). Only the European badger and stoat expressed high levels of ACE2 receptor in the nasal mucosal epithelium, which could suggest high susceptibility to ACE2-mediated respiratory infection. Expression of ACE2 receptor in the intestinal cells was ubiquitous across multiple taxa examined. Our results demonstrate the potential for ACE2-mediated viral infection in a selection of wild mammals and highlight the intra-taxon variability of ACE2 receptor expression, which might influence host susceptibility and infection.

7.
Avian Pathol ; 52(1): 36-50, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36205531

ABSTRACT

Newcastle disease (ND) is caused by virulent forms of avian paramyxovirus-1 (APMV-1) and is an economically important disease of poultry world-wide. Pigeon paramyxovirus 1 (PPMV-1), a sub-group of APMV-1 is endemic in Columbiformes and can cause infections of poultry. An outbreak of ND in partridges in Scotland, UK, in 2006 (APMV-1/partridge/UK(Scotland)/7575/06) was identified as a class II, genotype VI.2.1.1.2.1, more commonly associated with PPMV-1. It has been hypothesized that game birds may be a route of transmission into commercial poultry settings due to the semi-feral rearing system, which potentially brings them into contact with both wild-birds and poultry species. Therefore, the pathogenesis and transmission of APMV-1/partridge/UK(Scotland)/7575/06 in game birds and chickens was investigated, and compared to a contemporary PPMV-1 isolate, PPMV-1/pigeon/UK/015874/15. Viral shedding and seroconversion profiles demonstrated that pheasants were susceptible to infection with APMV-1/partridge/UK(Scotland)/7575/06 with limited clinical signs observed although they were able to excrete and transmit virus. In contrast, partridges and pheasants showed limited infection with PPMV-1/pigeon/UK/015874/15, causing mild clinical disease. Chickens, however, were productively infected and were able to transmit virus in the absence of clinical signs. From the data, it can be deduced that whilst game birds may play a role in the transmission and epidemiology of genotype VI.2 APMV-1 viruses, the asymptomatic nature of circulation within these species precludes evaluation of natural infection by clinical surveillance. It therefore remains a possibility that genotype VI.2 APMV-1 infection in game birds has the potential for asymptomatic circulation and remains a potential threat to avian production systems.RESEARCH HIGHLIGHTS Demonstration of infection of game birds with Pigeon paramyxovirus-1 (PPMV-1).There are differing dynamics of infection between different game bird species.Differing dynamics of infection between different PPMV-1 isolates and genotypes in game birds and chickens.


Subject(s)
Chickens , Newcastle Disease , Animals , Phylogeny , Newcastle disease virus , Poultry , Quail , Genotype
8.
J Virol ; 96(22): e0129022, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36342296

ABSTRACT

H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. IMPORTANCE H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat.


Subject(s)
Coinfection , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Chickens , Reassortant Viruses/genetics , Poultry , Phylogeny
9.
J Gen Virol ; 103(11)2022 11.
Article in English | MEDLINE | ID: mdl-36354744

ABSTRACT

Ferrets are widely used for experimental modelling of viral infections. However, background disease in ferrets could potentially confound intended experimental interpretation. Here we report the detection of a subclinical infection of ferret hepatitis E virus (FRHEV) within a colony sub-group of female laboratory ferrets that had been enrolled on an experimental viral infection study (non-hepatitis). Lymphoplasmacytic cuffing of periportal spaces was identified on histopathology but was negative for the RNA and antigens of the administered virus. Follow-up viral metagenomic analysis conducted on liver specimens revealed sequences attributed to FRHEV and these were confirmed by reverse-transcriptase polymerase chain reaction. Further genomic analysis revealed contiguous sequences spanning 79-95 % of the FRHEV genome and that the sequences were closely related to those reported previously in Europe. Using in situ hybridization by RNAScope, we confirmed the presence of HEV-specific RNA in hepatocytes. The HEV open reading frame 2 (ORF2) protein was also detected by immunohistochemistry in the hepatocytes and the biliary canaliculi. In conclusion, the results of our study provide evidence of background infection with FRHEV in laboratory ferrets. As this infection can be subclinical, we recommend routine monitoring of ferret populations using virological and liver function tests to avoid incorrect causal attribution of any liver disease detected in in vivo studies.


Subject(s)
Hepatitis E virus , Hepatitis E , Animals , Female , Hepatitis E virus/genetics , Ferrets , RNA, Viral/genetics , RNA, Viral/analysis , Hepatitis E/veterinary , United Kingdom
10.
Res Vet Sci ; 152: 564-568, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36183613

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is an enzyme within the renin-angiotensin-aldosterone system that plays a role in regulating blood pressure. However, it is also a cellular receptor for infection with SARS coronaviruses. Although most cats develop subclinical or mild disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) acquired from human patients, a previous study has suggested hypertrophic cardiomyopathy (HCM) is a potential risk factor for the development of severe disease in the cat. Herein we investigate the ACE2 protein expression in the lung, heart, and kidney from a small subset of cats with (n = 10) and without HCM (n = 10) by immunohistochemistry. The abundance and intensity of ACE2 expression is slightly elevated in alveoli (p = 0.09; 0.07, respectively) and bronchioles (p = 0.095; 0.37, respectively). However, statistically elevated abundance and intensity of ACE-2 expression was only evident in the heart of cats with HCM (p = 0.032; p = 0.011, respectively). Further investigation did not demonstrate a statistical correlation between the ACE2 expression in the heart in relation to the heart weight to body weight ratio, and the ventricular wall ratio. Current findings suggest an overexpression of ACE2 in HCM cases but follow up study is warranted to understand the pathophysiological process.


Subject(s)
COVID-19 , Cardiomyopathy, Hypertrophic , Cat Diseases , Humans , Cats , Animals , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2 , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Follow-Up Studies , COVID-19/veterinary , Renin-Angiotensin System , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/veterinary , Cardiomyopathy, Hypertrophic/metabolism
11.
Euro Surveill ; 27(39)2022 09.
Article in English | MEDLINE | ID: mdl-36177868

ABSTRACT

We report results of surveillance between June and mid-September 2022 of pet animals living in households of confirmed human monkeypox (MPX) cases. Since surveillance commenced, 154 animals from 40 households with a confirmed human MPX case were reported to the United Kingdom Animal and Plant Health Agency. No animals with clinical signs of MPX were identified. While a risk of transmission exists to pets from owners with a confirmed MPX virus infection, we assess this risk to be low.


Subject(s)
Mpox (monkeypox) , Disease Outbreaks/veterinary , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/veterinary , Monkeypox virus , United Kingdom/epidemiology
13.
Epidemiol Infect ; 150: e51, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35139977

ABSTRACT

The 2016-17 European outbreak of H5N8 HPAIV (Clade 2.3.4.4b) affected a wider range of avian species than the previous H5N8 outbreak (2014-15), including an incursion of H5N8 HPAIV into gamebirds in England. Natural infection of captive-reared pheasants (Phasianus colchicus) led to variable disease presentation; clinical signs included ruffled feathers, reluctance to move, bright green faeces, and/or sudden mortality. Several birds exhibited neurological signs (nystagmus, torticollis, ataxia). Birds exhibiting even mild clinical signs maintained substantial levels of virus replication and shedding, with preferential shedding via the oropharyngeal route. Gross pathology was consistent with HPAIV, in gallinaceous species but diphtheroid plaques in oropharyngeal mucosa associated with necrotising stomatitis were novel but consistent findings. However, minimal or modest microscopic pathological lesions were detected despite the systemic dissemination of the virus. Serology results indicated differences in the timeframe of exposure for each case (n = 3). This supported epidemiological conclusions confirming that the movement of birds between sites and other standard husbandry practices with limited hygiene involved in pheasant rearing (including several fomite pathways) contributed to virus spread between premises.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Animals , Birds , Disease Outbreaks/veterinary , Virulence
14.
J Virol ; 96(5): e0185621, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35019727

ABSTRACT

An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.


Subject(s)
Coinfection , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Reassortant Viruses , Animals , Chickens , Coinfection/veterinary , Ferrets , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Influenza, Human , Phylogeny , Poultry , Reassortant Viruses/genetics , Reassortant Viruses/pathogenicity
15.
Transbound Emerg Dis ; 69(4): 2275-2286, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34245662

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is a host cell membrane protein (receptor) that mediates the binding of coronavirus, most notably SARS coronaviruses in the respiratory and gastrointestinal tracts. Although SARS-CoV-2 infection is mainly confined to humans, there have been numerous incidents of spillback (reverse zoonoses) to domestic and captive animals. An absence of information on the spatial distribution of ACE2 in animal tissues limits our understanding of host species susceptibility. Here, we describe the distribution of ACE2 using immunohistochemistry (IHC) on histological sections derived from carnivores, ungulates, primates and chiroptera. Comparison of mink (Neovison vison) and ferret (Mustela putorius furo) respiratory tracts showed substantial differences, demonstrating that ACE2 is present in the lower respiratory tract of mink but not ferrets. The presence of ACE2 in the respiratory tract in some species was much more restricted as indicated by limited immunolabelling in the nasal turbinate, trachea and lungs of cats (Felis catus) and only the nasal turbinate in the golden Syrian hamster (Mesocricetus auratus). In the lungs of other species, ACE2 could be detected on the bronchiolar epithelium of the sheep (Ovis aries), cattle (Bos taurus), European badger (Meles meles), cheetah (Acinonyx jubatus), tiger and lion (Panthera spp.). In addition, ACE2 was present in the nasal mucosa epithelium of the serotine bat (Eptesicus serotinus) but not in pig (Sus scrofa domestica), cattle or sheep. In the intestine, ACE2 immunolabelling was seen on the microvillus of enterocytes (surface of intestine) across various taxa. These results provide anatomical evidence of ACE2 expression in a number of species which will enable further understanding of host susceptibility and tissue tropism of ACE2 receptor-mediated viral infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Receptors, Virus , Angiotensin-Converting Enzyme 2/metabolism , Animals , Animals, Wild , COVID-19/veterinary , Cat Diseases , Cats , Cattle , Cattle Diseases , Chiroptera , Ferrets , Livestock , Mink , Pets , Receptors, Virus/metabolism , SARS-CoV-2 , Sheep , Sheep Diseases , Spike Glycoprotein, Coronavirus/metabolism , Sus scrofa
16.
J Gen Virol ; 103(11)2022 11.
Article in English | MEDLINE | ID: mdl-36748502

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a wide host range, naturally infecting felids, canids, cervids, rodents and mustelids. Transmission of SARS-CoV-2 is universally accepted to occur via contact with contaminated secretions from the respiratory epithelium, either directly or indirectly. Transmission via droplet nuclei, generated from a cough or sneeze, has also been reported in several human and experimental animal scenarios. However, the role of droplet transmission at the human-animal interface remains to be fully elucidated. Here, the ferret infection model was used to investigate the routes of infection for the SARS-CoV-2 beta variant (B.1.351). Ferrets were exposed to droplets containing infectious SARS-CoV-2, ranging between 4 and 106 µm in diameter, simulating larger droplets produced by a cough from an infected person. Following exposure, viral RNA was detected on the fur of ferrets, and was deposited onto environmental surfaces, as well as the fur of ferrets placed in direct contact; SARS-CoV-2 remained infectious on the fur for at least 48 h. Low levels of viral RNA were detected in the nasal washes early post-exposure, yet none of the directly exposed, or direct-contact ferrets, became robustly infected or seroconverted to SARS-CoV-2. In comparison, ferrets intranasally inoculated with the SARS-CoV-2 beta variant became robustly infected, shedding viral RNA and infectious virus from the nasal cavity, with transmission to 75 % of naive ferrets placed in direct contact. These data suggest that larger infectious droplet nuclei and contaminated fur play minor roles in SARS-CoV-2 transmission among mustelids and potentially other companion animals.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2 , Ferrets , Cough , Aerosolized Particles and Droplets , RNA, Viral/genetics
18.
Viruses ; 13(4)2021 04 20.
Article in English | MEDLINE | ID: mdl-33924168

ABSTRACT

SARS-CoV-2 virus was first detected in late 2019 and circulated globally, causing COVID-19, which is characterised by sub-clinical to severe disease in humans. Here, we investigate the serological antibody responses to SARS-CoV-2 infection during acute and convalescent infection using a cohort of (i) COVID-19 patients admitted to hospital, (ii) healthy individuals who had experienced 'COVID-19 like-illness', and (iii) a cohort of healthy individuals prior to the emergence of SARS-CoV-2. We compare SARS-CoV-2 specific antibody detection rates from four different serological methods, virus neutralisation test (VNT), ID Screen® SARS-CoV-2-N IgG ELISA, Whole Antigen ELISA, and lentivirus-based SARS-CoV-2 pseudotype virus neutralisation tests (pVNT). All methods were able to detect prior infection with COVID-19, albeit with different relative sensitivities. The VNT and SARS-CoV-2-N ELISA methods showed a strong correlation yet provided increased detection rates when used in combination. A pVNT correlated strongly with SARS-CoV-2 VNT and was able to effectively discriminate SARS-CoV-2 antibody positive and negative serum with the same efficiency as the VNT. Moreover, the pVNT was performed with the same level of discrimination across multiple separate institutions. Therefore, the pVNT is a sensitive, specific, and reproducible lower biosafety level alternative to VNT for detecting SARS-CoV-2 antibodies for diagnostic and research applications. Our data illustrate the potential utility of applying VNT or pVNT and ELISA antibody tests in parallel to enhance the sensitivity of exposure to infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lentivirus/genetics , Male , Middle Aged , Neutralization Tests , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Viruses ; 13(2)2021 02 08.
Article in English | MEDLINE | ID: mdl-33567525

ABSTRACT

Avian influenza virus (AIV) subtypes H5 and H7 are capable of mutating from low to high pathogenicity strains, causing high mortality in poultry with significant economic losses globally. During 2015, two outbreaks of H7N7 low pathogenicity AIV (LPAIV) in Germany, and one each in the United Kingdom (UK) and The Netherlands occurred, as well as single outbreaks of H7N7 high pathogenicity AIV (HPAIV) in Germany and the UK. Both HPAIV outbreaks were linked to precursor H7N7 LPAIV outbreaks on the same or adjacent premises. Herein, we describe the clinical, epidemiological, and virological investigations for the H7N7 UK HPAIV outbreak on a farm with layer chickens in mixed free-range and caged units. H7N7 HPAIV was identified and isolated from clinical samples, as well as H7N7 LPAIV, which could not be isolated. Using serological and molecular evidence, we postulate how the viruses spread throughout the premises, indicating potential points of incursion and possible locations for the mutation event. Serological and mortality data suggested that the LPAIV infection preceded the HPAIV infection and afforded some clinical protection against the HPAIV. These results document the identification of a LPAIV to HPAIV mutation in nature, providing insights into factors that drive its manifestation during outbreaks.


Subject(s)
Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Antibodies, Viral/blood , Chickens , Disease Outbreaks/veterinary , Farms , Genome, Viral/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N7 Subtype/classification , Influenza A Virus, H7N7 Subtype/immunology , Influenza in Birds/epidemiology , Influenza in Birds/pathology , Influenza in Birds/transmission , Mutation , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/pathology , Poultry Diseases/transmission , United Kingdom/epidemiology , Virus Shedding/genetics
20.
Viruses ; 13(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467732

ABSTRACT

Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syndrome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation (dpi), and reached a peak in the upper respiratory cavity between 4 and 6 dpi. Viral genomic sequence analysis in samples from three animals identified the Y453F nucleotide substitution relative to the inoculum. Viral RNA was also detected in environmental samples, specifically in swabs of ferret fur. Microscopy analysis revealed viral protein and RNA in upper respiratory tract tissues, notably in cells of the respiratory and olfactory mucosae of the nasal turbinates, including olfactory neuronal cells. Antibody responses to the spike and nucleoprotein were detected from 21 dpi, but virus-neutralizing activity was low. A second intranasal inoculation (re-exposure) of two ferrets after a 17-day interval did not produce re-initiation of viral RNA shedding, but did amplify the humoral response in one animal. Therefore, ferrets can be experimentally infected with SARS-CoV-2 to model human asymptomatic infection.


Subject(s)
Asymptomatic Diseases , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/physiology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/pathology , COVID-19/transmission , Female , Ferrets , Genome, Viral/genetics , Mutation , Nasal Mucosa/virology , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...