Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
1.
HLA ; 103(6): e15544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924641

ABSTRACT

HLA (HLA) are a major barrier to transplant success, as HLA-A and -B molecules are principal ligands for T-cells, and HLA-C for Killer cell Immunoglobulin-like Receptors (KIR), directing Natural Killer (NK) cell function. HLA-C molecules are designated "C1" or "C2" ligands based on residues 77 and 80, which determine the NK cell responses. Here, we investigated donor/recipient HLA-C mismatch associations with the development of chronic lung allograft dysfunction (CLAD) following lung transplantation (LTx). 310 LTx donor/recipient pairs were Next Generation Sequenced and assessed for C1 and C2 allotypes. PIRCHE scores were used to quantify HLA mismatching between donor/recipients at amino acid level and stratify recipients into low, moderate or highly mismatched groups (n = 103-104). Associations between C ligands and freedom from CLAD was assessed with Cox regression models and survival curves. C2/C2 recipients (n = 42) had less CLAD than those with C1/C1 (n = 138) or C1/C2 genotypes (n = 130) (p < 0.05). Incidence of CLAD was lower in C2/C2 recipients receiving a mismatched C1/C1 allograft (n = 14), compared to matched (n = 8) or heterozygous (n = 20) allografts. Furthermore, ~80% of these recipients (C2/C2 recipients receiving C1/C1 transplants) remained CLAD-free for 10 years post-LTx. Recipients with higher HLA-C mismatching had less CLAD (p < 0.05) an observation not explained by linkage disequilibrium with other HLA loci. Our data implicates a role for HLA-C in CLAD development. HLA-C mismatching was not detrimental to LTx outcome, but potentially beneficial, representing a paradigm shift in assessing donor/recipient matching. This may inform better selection of donor/recipient pairs and potentially more targeted approaches to treating CLAD.


Subject(s)
HLA-C Antigens , Histocompatibility Testing , Lung Transplantation , Humans , Lung Transplantation/adverse effects , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Male , Female , Middle Aged , Adult , Genotype , Tissue Donors , Graft Rejection/immunology , Killer Cells, Natural/immunology , Aged , Primary Graft Dysfunction/immunology
2.
Sci Rep ; 14(1): 13524, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866913

ABSTRACT

Myxovirus resistance (Mx) proteins are products of interferon stimulated genes (ISGs) and Mx proteins of different species have been reported to mediate antiviral activity against a number of viruses, including influenza A viruses (IAV). Ferrets are widely considered to represent the 'gold standard' small animal model for studying pathogenesis and immunity to human IAV infections, however little is known regarding the antiviral activity of ferret Mx proteins. Herein, we report induction of ferret (f)Mx1/2 in a ferret lung cell line and in airway tissues from IAV-infected ferrets, noting that fMx1 was induced to higher levels that fMx2 both in vitro and in vivo. Overexpression confirmed cytoplasmic expression of fMx1 as well as its ability to inhibit infection and replication of IAV, noting that this antiviral effect of fMx1was modest when compared to cells overexpressing either human MxA or mouse Mx1. Together, these studies provide the first insights regarding the role of fMx1 in cell innate antiviral immunity to influenza viruses. Understanding similarities and differences in the antiviral activities of human and ferret ISGs provides critical context for evaluating results when studying human IAV infections in the ferret model.


Subject(s)
Ferrets , Influenza A virus , Myxovirus Resistance Proteins , Orthomyxoviridae Infections , Animals , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Influenza A virus/immunology , Humans , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Virus Replication/drug effects , Antiviral Agents/pharmacology , Cell Line , Mice , Immunity, Innate , Lung/virology , Lung/immunology
3.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746109

ABSTRACT

KIR3DL1 is a polymorphic inhibitory Natural Killer (NK) cell receptor that recognizes Human Leukocyte Antigen (HLA) class I allotypes that contain the Bw4 motif. Structural analyses have shown that in addition to residues 77-83 that span the Bw4 motif, polymorphism at other sites throughout the HLA molecule can influence the interaction with KIR3DL1. Given the extensive polymorphism of both KIR3DL1 and HLA class I, we built a machine learning prediction model to describe the influence of allotypic variation on the binding of KIR3DL1 to HLA class I. Nine KIR3DL1 tetramers were screened for reactivity against a panel of HLA class I molecules which revealed different patterns of specificity for each KIR3DL1 allotype. Separate models were trained for each of KIR3DL1 allotypes based on the full amino sequence of exons 2 and 3 encoding the α1 and α2 domains of the class I HLA allotypes, the set of polymorphic positions that span the Bw4 motif, or the positions that encode α1 and α2 but exclude the connecting loops. The Multi-Label-Vector-Optimization (MLVO) model trained on all alpha helix positions performed best with AUC scores ranging from 0.74 to 0.974 for the 9 KIR3DL1 allotype models. We show that a binary division into binder and non-binder is not precise, and that intermediate levels exist. Using the same models, within the binder group, high- and low-binder categories can also be predicted, the regions in HLA affecting the high vs low binder being completely distinct from the classical Bw4 motif. We further show that these positions affect binding affinity in a nonadditive way and induce deviations from linear models used to predict interaction strength. We propose that this approach should be used in lieu of simpler binding models based on a single HLA motif.

4.
Sci Signal ; 17(830): eade4335, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564492

ABSTRACT

Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1ß in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1ß secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1ß production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.


Subject(s)
Inflammasomes , Liver Diseases , Rats , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Hepatic Stellate Cells/metabolism , Ferritins/genetics , Ferritins/metabolism , Interleukin-1beta/metabolism , Inflammation/genetics , Inflammation/metabolism
5.
J Environ Manage ; 357: 120688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552511

ABSTRACT

The strategic reduction and remediation of degraded land is a global environmental priority. This is a particular priority in the Great Barrier Reef catchment area, Australia, where gully erosion a significant contributor to land degradation and water quality deterioration. Urgent action through the prioritisation and remediation of gully erosion sites is imperative to safeguard this UNESCO World Heritage site. In this study, we analyze a comprehensive dataset of 22,311 mapped gullies within a 3480 km2 portion of the lower Burdekin Basin, northeast Australia. Utilizing high-resolution lidar datasets, two independent methods - Minimum Contemporary Estimate (MCE) and Lifetime Average Estimate (LAE) - were developed to derive relative erosion rates. These methods, employing different data processing approaches and addressing different timeframes across the gully lifetime, yield erosion rates varying by up to several orders of magnitude. Despite some expected divergence, both methods exhibit strong, positive correlations with each other and additional validation data. There is a 43% agreement between the methods for the highest yielding 2% of gullies, although 80.5% of high-yielding gullies identified by either method are located within a 1 km proximity of each other. Importantly, distributions from both methods independently reveal that ∼80% of total volume of gully erosion in the study area is produced from only 20% of all gullies. Moreover, the top 2% of gullies generate 30% of the sediment loss and the majority of gullies do not significantly contribute to the overall catchment sediment yield. These results underscore the opportunity to achieve significant environmental outcomes through targeted gully management by prioritising a small cohort of high yielding gullies. Further insights and implications for management frameworks are discussed in the context of the characteristics of this cohort. Overall, this research provides a basis for informed decision-making in addressing gully erosion and advancing environmental conservation efforts.


Subject(s)
Conservation of Natural Resources , Soil , Humans , Conservation of Natural Resources/methods , Water Quality , Australia
7.
Cell Host Microbe ; 32(4): 506-526.e9, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38479397

ABSTRACT

To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.


Subject(s)
Core Stability , Microbiota , Humans , Skin/microbiology , Host Microbial Interactions , Biomarkers
9.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352363

ABSTRACT

To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease. Study Highlights: The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.

10.
Elife ; 132024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206309

ABSTRACT

Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.


Subject(s)
Protein Kinases , Signal Transduction , Cluster Analysis , Inflammation
12.
Glob Chang Biol ; 30(1): e17084, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273567

ABSTRACT

Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.


Subject(s)
Geologic Sediments , Invertebrates , Animals , Invertebrates/physiology , Fresh Water , Rivers , New Zealand , Ecosystem , Biodiversity , Environmental Monitoring
13.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241401

ABSTRACT

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Subject(s)
Melanoma , Skin Neoplasms , Humans , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Histocompatibility Antigens Class II , HLA Antigens
14.
Gene Ther ; 31(1-2): 56-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37612361

ABSTRACT

Gene Therapy Medicinal Products consist of a recombinant nucleic acid intended for the modulation or manipulation of a genetic sequence. A single administration of a novel gene therapy has the potential to be curative, with a durable long-term benefit to patients. Adeno-associated viral vectors have become the viral vector of choice for in vivo delivery of therapeutic transgenes as they are mildly immunogenic, can effectively transduce a variety of human tissues and cells, and have low levels of genomic integration. Central to the effective translation of data generated in discovery studies to the clinic is the selection of appropriate animal species for pivotal non-clinical studies. This review aims to support the selection of appropriate animal models for non-clinical studies to advance the development of novel adeno-associated virus gene therapies.


Subject(s)
Genetic Therapy , Genetic Vectors , Animals , Humans , Transgenes , Genetic Vectors/genetics , Models, Animal , Dependovirus/genetics , Gene Transfer Techniques
15.
Sci Total Environ ; 912: 169003, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043815

ABSTRACT

Increasing salinity is a concern for biodiversity in many freshwater ecosystems globally. Single species laboratory toxicity tests show major differences in freshwater organism survival depending on the specific ions that comprise salinity types and/or their ion ratios. Toxicity has been shown to be reduced by altering ionic composition, despite increasing (total) salinity. For insistence, single species tests show the toxicity of sodium bicarbonate (NaHCO3, which commonly is a large proportion of the salts from coalbeds) to freshwater invertebrates is reduced by adding magnesium (Mg2+) or chloride (Cl-). However, it is uncertain whether reductions in mortality observed in single-species laboratory tests predict effects within populations, communities and to ecosystem processes in more complex multi-species systems both natural and semi-natural. Here we report the results of an outdoor multi-species mesocosm experiment to determine if the effects of NaHCO3 are reduced by increasing the concentrations of Mg2+ or Cl- on: a) stream macroinvertebrate populations and communities; b) benthic chlorophyll-a and; c) the ecosystem process of leaf litter decomposition. We found a large effect of a high NaHCO3 concentration (≈4.45 mS/cm) with reduced abundances of multiple taxa, reduced emergence of adult insects and reduced species richness, altered community structure and increased leaf litter breakdown rates but no effect on benthic chlorophyll-a. However, despite predictions based on laboratory findings, we found no evidence that the addition of either Mg2+ or Cl- altered the effect of NaHCO3. In semi-natural environments such as mesocosms, and natural environments, organisms are subject to varying temperature and habitat factors, while also interacting with other species and trophic levels (e.g. predation, competition, facilitation), which are absent in single species laboratory tests. Thus, it should not be assumed single-species tests are good predictors of the effects of changing ionic compositions on stream biota in more natural environments.


Subject(s)
Chlorides , Ecosystem , Animals , Bicarbonates , Chlorides/toxicity , Chlorophyll , Chlorophyll A , Invertebrates , Magnesium , Rivers/chemistry , Sodium Bicarbonate/pharmacology
16.
Transpl Immunol ; 82: 101962, 2024 02.
Article in English | MEDLINE | ID: mdl-38007172

ABSTRACT

BACKGROUND: Human natural killer (NK) cells and gamma delta (γδ) T cells may impact outcomes of solid organ transplantation (SOT) such as lung transplantation (LTx) following the differential engagement of an array of activating and inhibitory receptors. Amongst these, CD16 may be particularly important due to its capacity to bind IgG to trigger antibody-dependent cellular cytotoxicity (ADCC) and the production of proinflammatory cytokines. While the use of immunosuppressive drugs (ISDs) is an integral component of SOT practice, their relative impact on various immune cells, especially γδT cells and CD16-induced functional responses, is still unclear. METHODS: The ADCC responses of peripheral blood NK cells and γδT cells from both healthy blood donors and adult lung transplant recipients (LTRs) were assessed by flow cytometry. Specifically, the degranulation response, as reflected in the expression of CD107a, and the capacity of both NK cells and γδT cells to produce IFN-γ and TNF-α was assessed following rituximab (RTX)-induced activation. Additionally, the effect of cyclosporine A (CsA), tacrolimus (TAC), prednisolone (Prdl) and azathioprine (AZA) at the concentration of 1 ng/ml, 10 ng/ml, 100 ng/ml, and 1000 ng/ml on these responses was also compared in both cell types. RESULTS: Flow cytometric analyses of CD16 expresion showed that its expression on γδT cells was both at lower levels and more variable than that on peripheral blood NK cells. Nevertheless functional analyses showed that despite these differences, γδT cells like NK cells can be readily activated by engagement with RTX to degranulate and produce cytokines such as IFNg and TNF-a. RTX-induced degranulation by either NK cells or γδT cells from healthy donors was not impacted by co-culture with individual ISDs. However, CsA and TAC but not Prdl and AZA did inhibit the production of IFN-γ and TNF-α by both cell types. Flow cytometric analyses of RTX-induced activation of NK cells and γδT cells from LTRs suggested their capacity to degranulate was not markedly impacted by transplantation with similar levels of cells expressing CD107 pre- and post-LTx. However an impairment in the ability of NK cells to produce cytokines was observed in samples obtained post LTx whereas γδT cell cytokine responses were not significantly impacted. CONCLUSIONS: In conclusion, the findings show that despite differences in the expression levels of CD16, γδT cells like NK cells can be readily activated by engagement with RTX and that in vitro exposure to CsA and TAC (calcineurin inhibitors) had a measurable effect on cytokine production but not degranulation by both NK cells and gdT cells from healthy donors. Finally the observation that in PBMC obtained from LTx recipients, NK cells but not γδT cells exhibited impaired cytokine reponses suggests that transplantation or chronic exposure to ISDs differentially impacts their potential to respond to the introduction of an allograft and/or transplant-associated infections.


Subject(s)
Leukocytes, Mononuclear , Tumor Necrosis Factor-alpha , Adult , Humans , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Killer Cells, Natural , Antibody-Dependent Cell Cytotoxicity , Cytokines/metabolism , Cyclosporine/pharmacology , Tacrolimus , Prednisolone/pharmacology , T-Lymphocytes/metabolism
17.
FEBS J ; 291(7): 1530-1544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158698

ABSTRACT

The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.


Subject(s)
HLA-E Antigens , Protein Sorting Signals , Animals , Humans , Mice , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , HLA Antigens/genetics , HLA Antigens/metabolism , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/chemistry , Peptides/metabolism , Receptors, Natural Killer Cell/metabolism
19.
Nat Commun ; 14(1): 5368, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666831

ABSTRACT

Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world's coral reef fisheries.


Subject(s)
Coral Reefs , Fisheries , Animals , Benchmarking , Biodiversity , Ecosystem
20.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569596

ABSTRACT

Immune surveillance by natural killer (NK) cells and their recruitment to sites of inflammation renders them susceptible to viral infection, potentially modulating their effector function. Here, we analyzed innate RNA receptor signaling in NK cells downstream of direct Influenza A virus (IAV) infection and its impact on NK cell effector function. Infection of NK cells with IAV resulted in the activation of TBK1, NF-Ï°B and subsequent type-I IFN secretion. CRISPR-generated knockouts in primary human NK cells revealed that this effect depended on the antiviral cytosolic RNA receptor RIG-I. Transfection of NK cells with synthetic 3p-dsRNA, a strong RIG-I agonist that mimics viral RNA, resulted in a similar phenotype and rendered NK cells resistant to subsequent IAV infection. Strikingly, both IAV infection and 3p-dsRNA transfection enhanced degranulation and cytokine production by NK cells when exposed to target cells. Thus, RIG-I activation in NK cells both supports their cell intrinsic viral defense and enhances their cytotoxic effector function against target cells.


Subject(s)
Influenza A virus , Influenza, Human , Interferon Type I , Humans , Influenza A virus/physiology , Killer Cells, Natural , RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...