Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 12(21): e029980, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889181

ABSTRACT

BACKGROUND: While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS: We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS: The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.


Subject(s)
Heart Failure , Humans , Female , Male , Stroke Volume/physiology , Pilot Projects , Proteomics , Phenotype , Oxygen/metabolism , Exercise Test/methods , Exercise Tolerance/physiology
2.
JACC Heart Fail ; 10(4): 278-286, 2022 04.
Article in English | MEDLINE | ID: mdl-35361448

ABSTRACT

OBJECTIVES: This study aimed to evaluate hemodynamic correlates of inducible blood pressure (BP) pulsatility with exercise in heart failure with preserved ejection fraction (HFpEF), to identify relationships to outcomes, and to compare this with heart failure with reduced ejection fraction (HFrEF). BACKGROUND: In HFpEF, determinants and consequences of exercise BP pulsatility are not well understood. METHODS: We measured exercise BP in 146 patients with HFpEF who underwent invasive cardiopulmonary exercise testing. Pulsatile BP was evaluated as proportionate pulse pressure (PrPP), the ratio of pulse pressure to systolic pressure. We measured pulmonary arterial catheter pressures, Fick cardiac output, respiratory gas exchange, and arterial stiffness. We correlated BP changes to central hemodynamics and cardiovascular outcome (nonelective cardiovascular hospitalization) and compared findings with 57 patients with HFrEF from the same referral population. RESULTS: In HFpEF, only age (standardized beta = 0.593; P < 0.001), exercise stroke volume (standardized beta = 0.349; P < 0.001), and baseline arterial stiffness (standardized beta = 0.182; P = 0.02) were significant predictors of peak exercise PrPP in multivariable analysis (R = 0.661). In HFpEF, lower PrPP was associated with lower risk of cardiovascular events, despite adjustment for confounders (HR:0.53 for PrPP below median; 95% CI: 0.28-0.98; P = 0.043). In HFrEF, lower exercise PrPP was not associated with arterial stiffness but was associated with lower peak exercise stroke volume (P = 0.013) and higher risk of adverse cardiovascular outcomes (P = 0.004). CONCLUSIONS: In HFpEF, greater inducible BP pulsatility measured using exercise PrPP reflects greater arterial stiffness and higher risk of adverse cardiovascular outcomes, in contrast to HFrEF where inducible exercise BP pulsatility relates to stroke volume reserve and favorable outcome.


Subject(s)
Heart Failure , Blood Pressure , Exercise/physiology , Exercise Test , Humans , Stroke Volume/physiology
3.
Respir Med ; 183: 106434, 2021 07.
Article in English | MEDLINE | ID: mdl-33964816

ABSTRACT

BACKGROUND: Obesity has multifactorial effects on lung function and exercise capacity. The contributions of obesity-related inflammatory pathways to alterations in lung function remain unclear. RESEARCH QUESTION: To examine the association of obesity-related inflammatory pathways with pulmonary function, exercise capacity, and pulmonary-specific contributors to exercise intolerance. METHOD: We examined 695 patients who underwent cardiopulmonary exercise testing (CPET) with invasive hemodynamic monitoring at Massachusetts General Hospital between December 2006-June 2017. We investigated the association of adiponectin, leptin, resistin, IL-6, CRP, and insulin resistance (HOMA-IR) with pulmonary function and exercise parameters using multivariable linear regression. RESULTS: Obesity-related inflammatory pathways were associated with worse lung function. Specifically, higher CRP, IL-6, and HOMA-IR were associated with lower percent predicted FEV1 and FVC with a preserved FEV1/FVC ratio suggesting a restrictive physiology pattern (P ≤ 0.001 for all). For example, a 1-SD higher natural-logged CRP level was associated with a nearly 5% lower percent predicted FEV1 and FVC (beta -4.8, s.e. 0.9 for FEV1; beta -4.9, s.e. 0.8 for FVC; P < 0.0001 for both). Obesity-related inflammatory pathways were associated with worse pulmonary vascular distensibility (adiponectin, IL-6, and CRP, P < 0.05 for all), as well as lower pulmonary artery compliance (IL-6 and CRP, P ≤ 0.01 for both). INTERPRETATION: Our findings highlight the importance of obesity-related inflammatory pathways including inflammation and insulin resistance on pulmonary spirometry and pulmonary vascular function. Specifically, systemic inflammation as ascertained by CRP, IL-6 and insulin resistance are associated with restrictive pulmonary physiology independent of BMI. In addition, inflammatory markers were associated with lower exercise capacity and pulmonary vascular dysfunction.


Subject(s)
Exercise Tolerance , Inflammation Mediators/metabolism , Lung/physiopathology , Obesity/metabolism , Obesity/physiopathology , Respiratory Function Tests , Signal Transduction/physiology , Adiponectin/metabolism , C-Reactive Protein/metabolism , Exercise Test , Female , Hemodynamics , Humans , Inflammation , Insulin Resistance , Interleukin-6/metabolism , Leptin/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...