Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697116

ABSTRACT

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Subject(s)
CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
2.
JID Innov ; 4(2): 100246, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38357212

ABSTRACT

Cutaneous sclerotic chronic graft-versus-host disease (cGVHD) is a common and highly morbid complication of allogeneic hematopoietic stem cell transplantation. Our goals were to identify signals active in the skin of patients with sclerotic cGVHD in an effort to better understand how to treat this manifestation and to explore the heterogeneity of the disease. We identified genes that are significantly upregulated in the skin of patients with sclerotic cGVHD (n = 17) compared with those in the skin of patients who underwent allogeneic hematopoietic stem cell transplantation without cutaneous cGVHD (n = 9) by bulk RNA sequencing. Sclerotic cGVHD was most associated with T helper 1, phagocytic, and fibrotic pathways. In addition, different transcriptomic groups of affected patients were discovered: those with fibrotic and inflammatory/T helper 1 gene expression (the fibroinflammatory group) and those with predominantly fibrotic/TGFß-associated expression (the fibrotic group). Further study will help elucidate whether these gene expression findings can be used to tailor treatment decisions. Multiple proteins encoded by highly induced genes in the skin (SFRP4, SERPINE2, COMP) were also highly induced in the plasma of patients with sclerotic cGVHD (n = 16) compared with those in plasma of control patients who underwent allogeneic hematopoietic stem cell transplantation without sclerotic cGVHD (n = 17), suggesting these TGFß and Wnt pathway mediators as candidate blood biomarkers of the disease.

3.
Nat Immunol ; 24(12): 2080-2090, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957354

ABSTRACT

Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.


Subject(s)
Immunity, Innate , Lymphopoiesis , Animals , Mice , Colitis , Ligands , Signal Transduction
4.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37886446

ABSTRACT

Gene set enrichment analysis (GSEA) is an important step for disease and drug discovery. Genomic, transcriptomics, proteomics and epigenetic analysis of tissue or cells generates gene lists that need to be further investigated in the known biological context. The advent of high-throughput technologies generates the vast number of gene lists that are up or down regulated together. One way of getting meaningful insights of the relationship of these genes is utilizing existing knowledge bases linking them with biological functions or phenotypes. Multiple public databases with annotated gene sets are available for GSEA, and enrichR is the most popular web application still requiring custom tools for large-scale mining. richPathR package is a collection of R functions that helps researchers carry out exploratory analysis and visualization of gene set enrichment using EnrichR.

5.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37756335

ABSTRACT

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Subject(s)
Antineoplastic Agents , STAT5 Transcription Factor , Humans , Immunity, Innate , Cell Differentiation , Killer Cells, Natural , Inflammation , STAT4 Transcription Factor/genetics
6.
J Exp Clin Cancer Res ; 42(1): 167, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443031

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, showing a rapid increasing incidence worldwide. Although most cSCC can be cured by surgery, a sizeable number of cases are diagnosed at advanced stages, with local invasion and distant metastatic lesions. In the skin, neurotrophins (NTs) and their receptors (CD271 and Trk) form a complex network regulating epidermal homeostasis. Recently, several works suggested a significant implication of NT receptors in cancer. However, CD271 functions in epithelial tumors are controversial and its precise role in cSCC is still to be defined. METHODS: Spheroids from cSCC patients with low-risk (In situ or Well-Differentiated cSCC) or high-risk tumors (Moderately/Poorly Differentiated cSCC), were established to explore histological features, proliferation, invasion abilities, and molecular pathways modulated in response to CD271 overexpression or activation in vitro. The effect of CD271 activities on the response to therapeutics was also investigated. The impact on the metastatic process and inflammation was explored in vivo and in vitro, by using zebrafish xenograft and 2D/3D models. RESULTS: Our data proved that CD271 is upregulated in Well-Differentiated tumors as compared to the more aggressive Moderately/Poorly Differentiated cSCC, both in vivo and in vitro. We demonstrated that CD271 activities reduce proliferation and malignancy marker expression in patient-derived cSCC spheroids at each tumor grade, by increasing neoplastic cell differentiation. CD271 overexpression significantly increases cSCC spheroid mass density, while it reduces their weight and diameter, and promotes a major fold-enrichment in differentiation and keratinization genes. Moreover, both CD271 overexpression and activation decrease cSCC cell invasiveness in vitro. A significant inhibition of the metastatic process by CD271 was observed in a newly established zebrafish cSCC model. We found that the recruitment of leucocytes by CD271-overexpressing cells directly correlates with tumor killing and this finding was further highlighted by monocyte infiltration in a THP-1-SCC13 3D model. Finally, CD271 activity synergizes with Trk receptor inhibition, by reducing spheroid viability, and significantly improves the outcome of photodynamic therapy (PTD) or chemotherapy in spheroids and zebrafish. CONCLUSION: Our study provides evidence that CD271 could prevent the switch between low to high-risk cSCC tumors. Because CD271 contributes to maintaining active differentiative paths and favors the response to therapies, it might be a promising target for future pharmaceutical development.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Animals , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Skin Neoplasms/pathology , Zebrafish , Cell Line, Tumor , Epidermis/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
7.
RMD Open ; 9(1)2023 03.
Article in English | MEDLINE | ID: mdl-36990659

ABSTRACT

BACKGROUND: The frequency of proteinase 3 gene (PRTN3) polymorphisms in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is not fully characterised. We hypothesise that the presence of a PRTN3 gene polymorphism (single nucleotide polymorphism (SNP) rs351111) is relevant for clinical outcomes. METHODS: DNA variant calling for SNP rs351111 (chr.19:844020, c.355G>A) in PRTN3 gene assessed the allelic frequency in patients with PR3-AAV included in the Rituximab in ANCA-Associated Vasculitis trial. This was followed by RNA-seq variant calling to characterise the mRNA expression. We compared clinical outcomes between patients homozygous for PRTN3-Ile119 or PRTN3-Val119. RESULTS: Whole blood samples for DNA calling were available in 188 patients. 75 patients with PR3-AAV had the allelic variant: 62 heterozygous PRTN3-Val119Ile and 13 homozygous for PRTN3-Ile119. RNA-seq was available for 89 patients and mRNA corresponding to the allelic variant was found in 32 patients with PR3-AAV: 25 heterozygous PRTN3-Val119Ile and 7 homozygous for PRTN3-Ile119. The agreement between the DNA calling results and mRNA expression of the 86 patients analysed by both methods was 100%. We compared the clinical outcomes of 64 patients with PR3-AAV: 51 homozygous for PRTN3-Val119 and 13 homozygous for PRTN3-Ile119. The frequency of severe flares at 18 months in homozygous PRTN3-Ile119 was significantly higher when compared with homozygous PRTN3-Val119 (46.2% vs 19.6%, p=0.048). Multivariate analysis identified homozygous PR3-Ile119 as main predictor of severe relapse (HR 4.67, 95% CI 1.16 to 18.86, p=0.030). CONCLUSION: In patients with PR3-AAV, homozygosity for PRTN3-Val119Ile polymorphism appears associated with higher frequency of severe relapse. Further studies are necessary to better understand the association of this observation with the risk of severe relapse.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Humans , Myeloblastin/genetics , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Antibodies, Antineutrophil Cytoplasmic/genetics , Polymorphism, Single Nucleotide , Recurrence
8.
Nat Commun ; 14(1): 1502, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932076

ABSTRACT

Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of ß2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.


Subject(s)
Endothelial Cells , Vasculitis , src-Family Kinases , Humans , Dasatinib , Endothelial Cells/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Phosphorylation , src-Family Kinases/genetics , src-Family Kinases/metabolism , Vasculitis/genetics
9.
J Invest Dermatol ; 143(7): 1220-1232.e9, 2023 07.
Article in English | MEDLINE | ID: mdl-36708949

ABSTRACT

Chromatin landscape and regulatory networks are determinants in lineage specification and differentiation. To define the temporospatial differentiation axis in murine epidermal cells in vivo, we generated datasets profiling expression dynamics (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin using sequencing), architecture (Hi-C), and histone modifications (chromatin immunoprecipitation followed by sequencing) in the epidermis. We show that many differentially regulated genes are suppressed during the differentiation process, with superenhancers controlling differentiation-specific epigenomic changes. Our data shows the relevance of the Dlx/Klf/Grhl combinatorial regulatory network in maintaining correct temporospatial gene expression during epidermal differentiation. We determined differential open compartments, topologically associating domain score, and looping in the basal cell and suprabasal cell epidermal fractions, with the evolutionarily conserved epidermal differentiation complex region showing distinct suprabasal cell-specific topologically associating domain and loop formation that coincided with superenhancer sites. Overall, our study provides a global genome-wide resource of chromatin dynamics that define unrecognized regulatory networks and the epigenetic control of Dlx3-bound superenhancer elements during epidermal differentiation.


Subject(s)
Chromatin , Transcription Factors , Mice , Animals , Chromatin/genetics , Chromatin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation/genetics , Epidermis/metabolism , Epidermal Cells/metabolism
10.
Exp Eye Res ; 227: 109353, 2023 02.
Article in English | MEDLINE | ID: mdl-36539051

ABSTRACT

In this paper, we use RNAseq to identify senescence and phagocytosis as key factors to understanding how mitomyin C (MMC) stimulates regenerative wound repair. We use conditioned media (CM) from untreated (CMC) and MMC treated (CMM) human and mouse corneal epithelial cells to show that corneal epithelial cells indirectly exposed to MMC secrete elevated levels of immunomodulatory proteins including IL-1α and TGFß1 compared to cells exposed to CMC. These factors increase epithelial and macrophage phagocytosis and promote ECM turnover. IL-1α supplementation can increase phagocytosis in control epithelial cells and attenuate TGFß1 induced αSMA expression by corneal fibroblasts. Yet, we show that epithelial cell CM contains factors besides IL-1α that regulate phagocytosis and αSMA expression by fibroblasts. Exposure to CMM also impacts the activation of bone marrow derived dendritic cells and their ability to present antigen. These in vitro studies show how a brief exposure to MMC induces corneal epithelial cells to release proteins and other factors that function in a paracrine way to enhance debris removal and enlist resident epithelial and immune cells as well as stromal fibroblasts to support regenerative and not fibrotic wound healing.


Subject(s)
Mitomycin , Paracrine Communication , Humans , Animals , Mice , Mitomycin/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Wound Healing , Epithelial Cells/metabolism
11.
Sci Immunol ; 7(77): eabl9467, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36427325

ABSTRACT

Activated lymphocytes adapt their metabolism to meet the energetic and biosynthetic demands imposed by rapid growth and proliferation. Common gamma chain (cγ) family cytokines are central to these processes, but the role of downstream signal transducer and activator of transcription 5 (STAT5) signaling, which is engaged by all cγ members, is poorly understood. Using genome-, transcriptome-, and metabolome-wide analyses, we demonstrate that STAT5 is a master regulator of energy and amino acid metabolism in CD4+ T helper cells. Mechanistically, STAT5 localizes to an array of enhancers and promoters for genes encoding essential enzymes and transporters, where it facilitates p300 recruitment and epigenetic remodeling. We also find that STAT5 licenses the activity of two other key metabolic regulators, the mTOR signaling pathway and the MYC transcription factor. Building on the latter, we present evidence for transcriptome-wide cooperation between STAT5 and MYC in both normal and transformed T cells. Together, our data provide a molecular framework for transcriptional programing of T cell metabolism downstream of cγ cytokines and highlight the JAK-STAT pathway in mediating cellular growth and proliferation.


Subject(s)
Janus Kinases , STAT5 Transcription Factor , STAT5 Transcription Factor/genetics , Signal Transduction , STAT Transcription Factors , T-Lymphocytes, Helper-Inducer , Cytokines
12.
J Clin Invest ; 132(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35289316

ABSTRACT

Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I-like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.


Subject(s)
Hereditary Autoinflammatory Diseases , Immunologic Deficiency Syndromes , Alternative Splicing , Child , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunologic Deficiency Syndromes/genetics , Male , NF-kappa B/genetics , NF-kappa B/metabolism , Phenotype
13.
Nat Commun ; 12(1): 3391, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099646

ABSTRACT

Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. The secondary outcomes include clinical response and mechanistic studies. The tofacitinib is found to be safe in SLE meeting study's primary endpoint. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, -26.5), cholesterol efflux capacity (p = 0.08, CI 95%: -0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.


Subject(s)
Atherosclerosis/prevention & control , Janus Kinase Inhibitors/administration & dosage , Lupus Erythematosus, Systemic/drug therapy , Piperidines/administration & dosage , Pyrimidines/administration & dosage , Adult , Aged , Animals , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/immunology , Cholesterol, HDL/blood , Double-Blind Method , Female , Genetic Predisposition to Disease , Heart Disease Risk Factors , Humans , Janus Kinase Inhibitors/adverse effects , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Piperidines/adverse effects , Pyrimidines/adverse effects , STAT4 Transcription Factor/genetics , Treatment Outcome , Vascular Stiffness/drug effects , Vasodilation/drug effects , Young Adult
14.
Oncogene ; 40(21): 3680-3694, 2021 05.
Article in English | MEDLINE | ID: mdl-33947961

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) ranks second in the frequency of all skin cancers. The balance between keratinocyte proliferation and differentiation is disrupted in the pathological development of cSCC. DLX3 is a homeobox transcription factor which plays pivotal roles in embryonic development and epidermal homeostasis. To investigate the impact of DLX3 expression on cSCC prognosis, we carried out clinicopathologic analysis of DLX3 expression which showed statistical correlation between tumors of higher pathologic grade and levels of DLX3 protein expression. Further, Kaplan-Meier survival curve analysis demonstrated that low DLX3 expression correlated with poor patient survival. To model the function of Dlx3 in skin tumorigenesis, a two-stage dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) study was performed on mice genetically depleted of Dlx3 in skin epithelium (Dlx3cKO). Dlx3cKO mice developed significantly more tumors, with more rapid tumorigenesis compared to control mice. In Dlx3cKO mice treated only with DMBA, tumors developed after ~16 weeks suggesting that loss of Dlx3 has a tumor promoting effect. Whole transcriptome analysis of tumor and skin tissue from our mouse model revealed spontaneous activation of the EGFR-ERBB2 pathway in the absence of Dlx3. Together, our findings from human and mouse model system support a tumor suppressive function for DLX3 in skin and underscore the efficacy of therapeutic approaches that target EGFR-ERBB2 pathway.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene/toxicity , Carcinoma, Squamous Cell/pathology , Homeodomain Proteins/genetics , Receptor, ErbB-2/metabolism , Skin Neoplasms/pathology , Transcription Factors/genetics , Aged , Animals , Carcinogens/toxicity , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Disease Models, Animal , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Homeodomain Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Grading , Receptor, ErbB-2/genetics , Signal Transduction , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Survival Rate , Tetradecanoylphorbol Acetate/toxicity , Transcription Factors/metabolism
15.
Nat Commun ; 12(1): 2745, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980856

ABSTRACT

In mice, time of day strongly influences lethality in response to LPS, with survival greatest at the beginning compared to the end of the light cycle. Here we show that feeding, rather than light, controls time-of-day dependent LPS sensitivity. Mortality following LPS administration is independent of cytokine production and the clock regulator BMAL1 expressed in myeloid cells. In contrast, deletion of BMAL1 in hepatocytes globally disrupts the transcriptional response to the feeding cycle in the liver and results in constitutively high LPS sensitivity. Using RNAseq and functional validation studies we identify hepatic farnesoid X receptor (FXR) signalling as a BMAL1 and feeding-dependent regulator of LPS susceptibility. These results show that hepatocyte-intrinsic BMAL1 and FXR signalling integrate nutritional cues to regulate survival in response to innate immune stimuli. Understanding hepatic molecular programmes operational in response to these cues could identify novel pathways for targeting to enhance endotoxemia resistance.


Subject(s)
ARNTL Transcription Factors/metabolism , Feeding Behavior/physiology , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Sepsis/mortality , ARNTL Transcription Factors/genetics , Animals , Circadian Rhythm/genetics , Disease Models, Animal , Disease Resistance , Hepatocytes/metabolism , Hypoglycemia/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Mice , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/genetics , Sepsis/chemically induced , Sepsis/genetics , Sepsis/metabolism , Signal Transduction
16.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33657395

ABSTRACT

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Subject(s)
Inflammation/immunology , Interleukin-23/metabolism , Intestinal Mucosa/immunology , MicroRNAs/genetics , Th17 Cells/immunology , Animals , Feedback, Physiological , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-maf/metabolism , Receptors, Interleukin/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
17.
J Bone Miner Res ; 36(1): 199-214, 2021 01.
Article in English | MEDLINE | ID: mdl-32804442

ABSTRACT

Osteoclasts (OCs) are bone-resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type (WT) mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C- monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of preestablished transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of interferon regulatory factor 8 (IRF8), a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8-deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation. © 2020 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Monocytes , Osteogenesis , Animals , Cell Differentiation , Epigenesis, Genetic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Monocytes/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , RANK Ligand/metabolism
18.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33010223

ABSTRACT

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Subject(s)
Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/immunology , Killer Cells, Natural/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Toxoplasma/immunology , Toxoplasmosis/genetics , Toxoplasmosis/immunology
19.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Article in English | MEDLINE | ID: mdl-33106654

ABSTRACT

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Subject(s)
Antigens, CD34/metabolism , Cell Proliferation , Cell Self Renewal , Cellular Senescence , Forkhead Transcription Factors/metabolism , Muscle, Skeletal/metabolism , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Age Factors , Animals , Cardiotoxins/toxicity , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/genetics , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/transplantation , Phenotype , Proto-Oncogene Proteins c-akt/metabolism , Regeneration/drug effects , Regeneration/genetics , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/pathology , Satellite Cells, Skeletal Muscle/transplantation , Signal Transduction , Stem Cell Niche
20.
Nat Commun ; 11(1): 4678, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938916

ABSTRACT

Diabetic foot ulcers (DFUs) are a life-threatening disease that often result in lower limb amputations and a shortened lifespan. However, molecular mechanisms contributing to the pathogenesis of DFUs remain poorly understood. We use next-generation sequencing to generate a human dataset of pathogenic DFUs to compare to transcriptional profiles of human skin and oral acute wounds, oral as a model of "ideal" adult tissue repair due to accelerated closure without scarring. Here we identify major transcriptional networks deregulated in DFUs that result in decreased neutrophils and macrophages recruitment and overall poorly controlled inflammatory response. Transcription factors FOXM1 and STAT3, which function to activate and promote survival of immune cells, are inhibited in DFUs. Moreover, inhibition of FOXM1 in diabetic mouse models (STZ-induced and db/db) results in delayed wound healing and decreased neutrophil and macrophage recruitment in diabetic wounds in vivo. Our data underscore the role of a perturbed, ineffective inflammatory response as a major contributor to the pathogenesis of DFUs, which is facilitated by FOXM1-mediated deregulation of recruitment of neutrophils and macrophages, revealing a potential therapeutic strategy.


Subject(s)
Diabetic Foot/genetics , Diabetic Foot/immunology , Forkhead Box Protein M1/immunology , Wound Healing/immunology , Adult , Aged , Animals , Cell Proliferation , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/immunology , Diabetic Foot/pathology , Disease Models, Animal , Female , Forkhead Box Protein M1/antagonists & inhibitors , Forkhead Box Protein M1/metabolism , Humans , Inflammation/genetics , Inflammation/immunology , Male , Mice, Inbred Strains , Middle Aged , Mouth Mucosa/physiology , Pyridines/pharmacology , Thiophenes/pharmacology , Transcriptome/physiology , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...