Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Small GTPases ; 13(1): 114-127, 2022 01.
Article in English | MEDLINE | ID: mdl-33949915

ABSTRACT

RAS is the most frequently mutated oncogene in human cancer with nearly ~20% of cancer patients possessing mutations in one of three RAS genes (K, N or HRAS). However, KRAS is mutated in nearly 90% of pancreatic ductal carcinomas (PDAC). Although pharmacological inhibition of RAS has been challenging, KRAS(G12C)-specific inhibitors have recently entered the clinic. While KRAS(G12C) is frequently expressed in lung cancers, it is rare in PDAC. Thus, more broadly efficacious RAS inhibitors are needed for treating KRAS mutant-driven cancers such as PDAC. A RAS-specific tool biologic, NS1 Monobody, inhibits HRAS- and KRAS-mediated signalling and oncogenic transformation both in vitro and in vivo by targeting the α4-α5 allosteric site of RAS and blocking RAS self-association. Here, we evaluated the efficacy of targeting the α4-α5 interface of KRAS as an approach to inhibit PDAC development using an immunocompetent orthotopic mouse model. Chemically regulated NS1 expression inhibited ERK and AKT activation in KRAS(G12D) mutant KPC PDAC cells and reduced the formation and progression of pancreatic tumours. NS1-expressing tumours were characterized by increased infiltration of CD4 + T helper cells. These results suggest that targeting the #x3B1;4-#x3B1;5 allosteric site of KRAS may represent a viable therapeutic approach for inhibiting KRAS-mutant pancreatic tumours.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinogenesis/pathology , Pancreatic Neoplasms
3.
J Pharmacol Exp Ther ; 374(2): 308-318, 2020 08.
Article in English | MEDLINE | ID: mdl-32546528

ABSTRACT

ME-344 is a second-generation cytotoxic isoflavone with anticancer activity promulgated through interference with mitochondrial functions. Using a click chemistry version of the drug together with affinity-enriched mass spectrometry, voltage-dependent anion channels (VDACs) 1 and 2 were identified as drug targets. To determine the importance of VDAC1 or 2 to cytotoxicity, we used lung cancer cells that were either sensitive (H460) or intrinsically resistant (H596) to the drug. In H460 cells, depletion of VDAC1 and VDAC2 by small interfering RNA impacted ME-344 effects by diminishing generation of reactive oxygen species (ROS), preventing mitochondrial membrane potential dissipation, and moderating ME-344-induced cytotoxicity and mitochondrial-mediated apoptosis. Mechanistically, VDAC1 and VDAC2 knockdown prevented ME-344-induced apoptosis by inhibiting Bax mitochondrial translocation and cytochrome c release as well as apoptosis in these H460 cells. We conclude that VDAC1 and 2, as mediators of the response to oxidative stress, have roles in modulating ROS generation, Bax translocation, and cytochrome c release during mitochondrial-mediated apoptosis caused by ME-344. SIGNIFICANCE STATEMENT: Dissecting preclinical drug mechanisms are of significance in development of a drug toward eventual Food and Drug Administration approval.


Subject(s)
Antineoplastic Agents/pharmacology , Isoflavones/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Humans , Isoflavones/metabolism , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
4.
Int J Mol Sci ; 21(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272708

ABSTRACT

The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.


Subject(s)
Adherens Junctions/metabolism , Colon/metabolism , Epithelial Cells/metabolism , RNA Interference/physiology , Animals , Carcinogenesis/metabolism , Cell Line , Cell Proliferation/physiology , Colonic Neoplasms/metabolism , Cytoplasm/metabolism , Female , Humans , Intestinal Mucosa/metabolism , Male , Mice , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism
5.
ACS Sens ; 4(7): 1791-1797, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31299153

ABSTRACT

A pyrene-containing salicylic acid derivative (4) was found to be low in fluorescence, but its derivative pyrene-containing methyl salicylate (3) was found to be highly fluorescent in aqueous solution. This derivative has been tested in solution and found to be superior in the fluorogenic assay of pharmaceutical compounds, detection of chemical warfare agents, a preliminary toxicology test, mutagenicity of medicinal compounds, and other chemical analyses, including trimethylsilyl diazomethane; alkyl bromides and iodides; a sulfur mustard mimic 2-chloroethyl ethyl sulfide; and anticancer drugs, busulfan and pipobroman. The salicylic acid derivative (4) was applied as a fluorogenic probe for the detection of alkylating agents by esterification and generating fluorescence at 475 nm in solutions at low concentrations.


Subject(s)
Alkylating Agents/analysis , Fluorescent Dyes/chemistry , Pyrenes/chemistry , Salicylates/chemistry , Alkylating Agents/chemistry , Antineoplastic Agents/analysis , Antineoplastic Agents/chemistry , Busulfan/analysis , Busulfan/chemistry , Chemical Warfare Agents/analysis , Chemical Warfare Agents/chemistry , Fluorescent Dyes/chemical synthesis , Mustard Gas/analogs & derivatives , Mustard Gas/analysis , Mustard Gas/chemistry , Pipobroman/analysis , Pipobroman/chemistry , Pyrenes/chemical synthesis , Salicylates/chemical synthesis , Spectrometry, Fluorescence , Temozolomide/analysis , Temozolomide/chemistry
6.
Cancer Res ; 79(16): 4072-4085, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31227482

ABSTRACT

ME-344 is a second-generation isoflavone with unusual cytotoxic properties that is in clinical testing in cancer. To identify targets that contribute to its anticancer activity and therapeutic index, we used lung cancer cell lines that are naturally sensitive or resistant to ME-344. Drug-induced apoptosis was linked with enhanced levels of reactive oxygen species and this initiated a nuclear erythroid factor 2-like 2 signaling response, downstream of which, heme oxygenase 1 (HO-1) was also found to be time-dependently inhibited by ME-344. ME-344 specifically bound to, and altered, HO-1 structure and increased HO-1 translocation from the rough endoplasmic reticulum to mitochondria, but only in drug-sensitive cells. These effects did not occur in either drug-resistant or primary lung fibroblasts with lower HO-1 basal levels. HO-1 was confirmed as a drug target by using surface plasmon resonance technology and through interaction with a clickable ME-344 compound (M2F) and subsequent proteomic analyses, showing direct binding of ME-344 with HO-1. Proteomic analysis showed that clusters of mitochondrial proteins, including voltage-dependent anion-selective channels, were also impacted by ME-344. Human lung cancer biopsies expressed higher levels of Nrf2 and HO-1 compared with normal tissues. Overall, our data show that ME-344 inhibits HO-1 and impacts its mitochondrial translocation. Other mitochondrial proteins are also affected, resulting in interference in tumor cell redox homeostasis and mitochondrial function. These factors contribute to a beneficial therapeutic index and support continued clinical development of ME-344. SIGNIFICANCE: A novel cytotoxic isoflavone is shown to inhibit heme oxygenase, a desirable yet elusive target that disrupts redox homeostasis causing cell death.


Subject(s)
Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/metabolism , Isoflavones/pharmacology , Lung Neoplasms/metabolism , Mitochondria/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Energy Metabolism/drug effects , Enzyme Inhibitors/pharmacology , Humans , Isoflavones/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mitochondria/metabolism , Molecular Targeted Therapy , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Unfolded Protein Response/drug effects
7.
Inflammation ; 42(1): 170-184, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30244405

ABSTRACT

Sepsis is an acute inflammatory syndrome in response to infection. In some cases, excessive inflammation from sepsis results in endothelial dysfunction and subsequent increased vascular permeability leading to organ failure. We previously showed that treatment with endothelial progenitor cells, which highly express microRNA-126 (miR-126), improved survival in mice subjected to cecal ligation and puncture (CLP) sepsis. miRNAs are important regulators of gene expression and cell function, play a major role in endothelial homeostasis, and may represent an emerging therapeutic modality. However, delivery of miRNAs to cells in vitro and in vivo is challenging due to rapid degradation by ubiquitous RNases. Herein, we developed a nanoparticle delivery system separately combining deacetylated poly-N-acetyl glucosamine (DEAC-pGlcNAc) polymers with miRNA-126-3p and miRNA-126-5p and testing these combinations in vitro and in vivo. Our results demonstrate that DEAC-pGlcNAc polymers have an appropriate size and zeta potential for cellular uptake and when complexed, DEAC-pGlcNAc protects miRNA from RNase A degradation. Further, DEAC-pGlcNAc efficiently encapsulates miRNAs as evidenced by preventing their migration in an agarose gel. The DEAC-pGlcNAc-miRNA complexes were taken up by multiple cell types and the delivered miRNAs had biological effects on their targets in vitro including pERK and DLK-1. In addition, we found that delivery of DEAC-pGlcNAc alone or DEAC-pGlcNAc:miRNA-126-5p nanoparticles to septic animals significantly improved survival, preserved vascular integrity, and modulated cytokine production. These composite studies support the concept that DEAC-pGlcNAc nanoparticles are an effective platform for delivering miRNAs and that they may provide therapeutic benefit in sepsis.


Subject(s)
Drug Carriers/chemistry , MicroRNAs/administration & dosage , Nanoparticles/chemistry , Sepsis/drug therapy , Acetylglucosamine/therapeutic use , Animals , Cecum/microbiology , Cytokines/metabolism , Endothelium, Vascular/metabolism , Ligation , Mice , Punctures/adverse effects , Sepsis/etiology , Sepsis/metabolism , Sepsis/mortality , Survival Rate
8.
RSC Adv ; 8(46): 25909-25919, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30220998

ABSTRACT

Hypothermic preservation is the standard of care for storing organs prior to transplantation. Endothelial and epithelial injury associated with hypothermic storage causes downstream graft injury and, as such, the choice of an ideal donor organ preservation solution remains controversial. Cold storage solutions, by design, minimize cellular necrosis and optimize cellular osmotic potential, but do little to assuage immunological cell activation or immune cell priming post transplantation. Thus, here we explore the efficacy of our previously described novel Targeted Rapamycin Micelles (TRaM) as an additive to standard-of-care University of Wisconsin preservation solution as a means to alter the immunological microenvironment post transplantation using in vivo models of tracheal and aortic allograft transplantation. In all models of transplantation, grafts pre-treated with 100 ng mL-1 of TRaM augmented preservation solution ex vivo showed a significant inhibition of chronic rejection post-transplantation, as compared to UW augmented with free rapamycin at a ten-fold higher dose. Here, for the first time, we present a novel method of organ pretreatment using a nanotherapeutic-based cellular targeted delivery system that enables donor administration of rapamycin, at a ten-fold decreased dose during cold storage. Clinically, these pretreatment strategies may positively impact post-transplant outcomes and can be readily translated to clinical scenarios.

9.
Adv Cancer Res ; 139: 163-184, 2018.
Article in English | MEDLINE | ID: mdl-29941104

ABSTRACT

Gold nanoparticles (Au NPs) are very attractive and versatile nanoparticles since they have a remarkable capacity to absorb and scatter light, convert optical energy into heat via nonradiative electron relaxation dynamics, and surface chemistries that can be capitalized upon so that the nanoparticles act as drug carriers. Au NPs have excellent stability and biocompatibility, tailorable shapes and sizes, an easily functionalized surface, high drug-loading capacity, and low toxicity. The properties of Au NPs can be leveraged to develop more precisely targeted and effective cancer therapeutics. Au NPs have been used to target delivery of chemotherapeutic agents, complement radiation and thermal therapy, and enhance contrast for in vivo imaging of the tumor in a variety of cancer types and diseased organs.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Gold/chemistry , Metal Nanoparticles/administration & dosage , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Humans , Metal Nanoparticles/chemistry
11.
Drug Deliv ; 25(1): 973-984, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29688083

ABSTRACT

Most drugs cannot penetrate the blood-brain barrier (BBB), greatly limiting the use of anti-cancer agents for brain cancer therapy. Temperature sensitive liposomes (TSL) are nanoparticles that rapidly release the contained drug in response to hyperthermia (>40 °C). Since hyperthermia also transiently opens the BBB, we hypothesized that localized hyperthermia can achieve drug delivery across the BBB when combined with TSL. TSL-encapsulated doxorubicin (TSL-Dox) was infused intravenously over 30 min at a dose of 0.94 mg/kg in anesthetized beagles (age ∼17 months). Following, a hyperthermia probe was placed 5-10 mm deep through one of four 3-mm skull burr holes. Hyperthermia was performed randomized for 15 or 30 min, at either 45 or 50 °C. Blood was drawn every 30 min to measure TSL-Dox pharmacokinetics. Nonsurvival studies were performed in four dogs, where brain tissue at the hyperthermia location was extracted following treatment to quantify doxorubicin uptake via high-performance liquid chromatography (HPLC) and to visualize cellular uptake via fluorescence microscopy. Survival studies for 6 weeks were performed in five dogs treated by a single hyperthermia application. Local doxorubicin delivery correlated with hyperthermia duration and ranged from 0.11 to 0.74 µg/g of brain tissue at the hyperthermia locations, with undetectable drug uptake in unheated tissue. Fluorescence microscopy demonstrated doxorubicin delivery across the BBB. Histopathology in Haematoxylin & Eosin (H&E) stained samples demonstrated localized damage near the probe. No animals in the survival group demonstrated significant neurological deficits. This study demonstrates that localized doxorubicin delivery to the brain can be facilitated by TSL-Dox with localized hyperthermia with no significant neurological deficits.


Subject(s)
Blood-Brain Barrier/metabolism , Doxorubicin/metabolism , Fever/metabolism , Liposomes/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Biological Transport/physiology , Brain/drug effects , Dogs , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Female , Male , Nanoparticles/metabolism , Temperature
12.
ACS Chem Neurosci ; 9(1): 100-106, 2018 01 17.
Article in English | MEDLINE | ID: mdl-28532151

ABSTRACT

Bioluminescence is a useful tool for imaging of cancer in in vivo animal models that endogenously express luciferase, an enzyme that requires a substrate for visual readout. Current bioluminescence imaging, using commonly available luciferin substrates, only lasts a short time (15-20 min). To avoid repeated administration of luciferase substrate during cancer detection and surgery, a long lasting bioluminescence imaging substrate or system is needed. A novel water-soluble biotinylated luciferase probe, B-YL (1), was synthesized. A receptor-targeted complex of B-YL with streptavidin (SA) together with a biotinylated epidermal growth factor short peptide (B-EGF) (SA/B-YL/B-EGF = 1:3:1, molar ratio) was then prepared to demonstrate selective targeting. The complex was incubated with brain cancer cell lines overexpressing the EGF receptor (EGFR) and transfected with the luciferase gene. Results show that the complex specifically detects cancer cells by bioluminescence. The complex was further used to image xenograft brain tumors transfected with a luciferase gene in mice. The complex detects the tumor immediately, and bioluminescence lasts for 5 days. Thus, the complex generates a long lasting bioluminescence for cancer detection in mice. The complex with selective targeting may be used in noninvasive cancer diagnosis and accurate surgery in cancer treatment in clinics in the future.


Subject(s)
Brain Neoplasms/diagnostic imaging , Luminescent Agents , Luminescent Measurements , Animals , Biotinylation , Brain Neoplasms/enzymology , Cell Line, Tumor , Epidermal Growth Factor/chemistry , Humans , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Luminescent Agents/chemistry , Mice, Nude , Oligopeptides/chemistry , Streptavidin , Time Factors , Transfection
13.
Methods Mol Biol ; 1530: 283-305, 2017.
Article in English | MEDLINE | ID: mdl-28150209

ABSTRACT

Optical imaging strategies, such as fluorescence and bioluminescence imaging, are non-invasive, in vivo whole body imaging techniques utilized to study cancer. Optical imaging is widely used in preclinical work because of its ease of use and cost-friendliness. It also provides the opportunity to study animals and biological responses longitudinally over time. Important considerations include depth of tissue penetration, photon scattering, absorption and the choice of light emitting probe, all of which affect the resolution (image quality and data information) and the signal to noise ratio of the image. We describe how to use bioluminescence and fluorescence imaging to track a chemotherapeutic delivery nanocarrier conjugated with a fluorophore to determine its localization in vivo.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Luminescent Measurements/methods , Molecular Imaging/methods , Optical Imaging/methods , Animals , Cell Line, Tumor , Disease Models, Animal , Fluorescent Dyes , Gene Expression , Genes, Reporter , Image Processing, Computer-Assisted , Mice , Mice, Nude , Tumor Burden
14.
Curr Neuropharmacol ; 15(1): 104-115, 2017.
Article in English | MEDLINE | ID: mdl-26903150

ABSTRACT

Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Stem Neoplasms/therapy , Glioma/therapy , Nanotechnology/methods , Pons/pathology , Animals , Antineoplastic Agents/pharmacology , Humans , Nanoparticles/metabolism , Pons/drug effects
15.
Nanomedicine (Lond) ; 11(6): 581-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27003178

ABSTRACT

AIM: Glioblastoma multiforme is a devastating disease with no curative options due to the difficulty in achieving sufficient quantities of effective chemotherapies into the tumor past the blood-brain barrier. Micelles loaded with temozolomide (TMZ) were designed to increase the delivery of this drug into the brain. MATERIALS & METHODS: pH-responsive micelles composed of distearoyl phosphoethanolamine-PEG-2000-amine and N-palmitoyl homocysteine were surface-functionalized with PDGF peptide and Dylight 680 fluorophore. RESULTS & CONCLUSION: PDGF-micelles containing TMZ have specific uptake and increased killing in glial cells compared with untargeted micelles. In vivo studies demonstrated selective accumulation of PDGF-micelles containing TMZ in orthotopic gliomas implanted in mice. Targeted micelle-based drug carrier systems hold potential for delivery of a wide variety of hydrophobic drugs thereby reducing its systemic toxicity.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/drug therapy , Brain/drug effects , Dacarbazine/analogs & derivatives , Delayed-Action Preparations/metabolism , Glioblastoma/drug therapy , Receptors, Platelet-Derived Growth Factor/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacokinetics , Antineoplastic Agents, Alkylating/therapeutic use , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Dacarbazine/administration & dosage , Dacarbazine/pharmacokinetics , Dacarbazine/therapeutic use , Delayed-Action Preparations/chemistry , Drug Delivery Systems , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice, Nude , Micelles , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Protons , Receptors, Platelet-Derived Growth Factor/chemistry , Temozolomide
16.
Crit Rev Biomed Eng ; 44(6): 443-457, 2016.
Article in English | MEDLINE | ID: mdl-29431091

ABSTRACT

Primary brain tumors are often aggressive, with short survival from time of diagnosis even with standard of care therapies such as surgery, chemotherapy, and radiation therapy. Thermal therapies have been extensively investigated as both primary and adjuvant therapy. Although thermal therapies are not yet widely used clinically, there have been several promising approaches demonstrated in both animals and humans. This review presents thermal therapy approaches in animal and human studies, including both hyperthermia (temperatures ~42°C-45°C) and thermal ablation (temperatures > 50°C). Hyperthermia is primarily used as adjuvant to chemotherapy and radiotherapy, and is the most widely studied radiation sensitizer where enhanced efficacy has been shown in human patients with brain cancer. Hyperthermia has additional beneficial effects such as immunogenic effects, and opening of the bloodbrain barrier to potentially enhance drug delivery, for example in combination with nanoparticle drug delivery systems. Thermal ablation uses high temperatures for direct local tumor destruction, and it found its way into clinical use as laser interstitial thermal therapy (LITT). This review presents various hyperthermia and ablation approaches, including a review of different devices and methods that have been used for thermal therapies, such as radiofrequency/microwaves, laser, high-intensity focused ultrasound, and magnetic nanoparticles. Current research efforts include the combination of advanced thermal therapy devices, such as focused ultrasound with radiation, as well as the use of thermal therapies to enhance chemotherapy delivery across the blood-brain barrier.

17.
Nature ; 525(7567): 109-13, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26258302

ABSTRACT

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Subject(s)
Cadherins/genetics , Cadherins/metabolism , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/pathology , Mutation/genetics , Animals , Body Patterning/genetics , Cadherin Related Proteins , Cadherins/deficiency , Cell Movement/genetics , Chromosomes, Human, Pair 11/genetics , Female , Humans , Male , Mice , Mitral Valve/abnormalities , Mitral Valve/embryology , Mitral Valve/pathology , Mitral Valve/surgery , Pedigree , Phenotype , Protein Stability , RNA, Messenger/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
Mol Pharm ; 12(9): 3250-60, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26198693

ABSTRACT

Targeting gold nanoparticles (AuNPs) with two or more receptor binding peptides has been proposed to address intratumoral heterogeneity of glioblastomas that overexpress multiple cell surface receptors to ultimately improve therapeutic efficacy. AuNPs conjugated with peptides against both the epidermal growth factor and transferrin receptors and loaded with the photosensitizer phthalocyanine 4 (Pc 4) have been designed and compared with monotargeted AuNPs for in vitro and in vivo studies. The (EGFpep+Tfpep)-AuNPs-Pc 4 with a particle size of ∼41 nm improved both specificity and worked synergistically to decrease time of maximal accumulation in human glioma cells that overexpressed two cell surface receptors as compared to cells that overexpressed only one. Enhanced cellular association and increased cytotoxicity were achieved. In vivo studies show notable accumulation of these agents in the brain tumor regions.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Glioblastoma/drug therapy , Gold/chemistry , Indoles/pharmacology , Metal Nanoparticles/chemistry , Photochemotherapy , Receptors, Transferrin/antagonists & inhibitors , Theranostic Nanomedicine , Animals , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Mice , Mice, Nude , Molecular Targeted Therapy , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , Photosensitizing Agents/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
RSC Adv ; 5(54): 43552-43562, 2015.
Article in English | MEDLINE | ID: mdl-26167278

ABSTRACT

In this study, we developed a stable, nontoxic novel micelle nanoparticle to attenuate responses of endothelial cell (EC) inflammation when subjected to oxidative stress, such as observed in organ transplantation. Targeted Rapamycin Micelles (TRaM) were synthesized using PEG-PE-amine and N-palmitoyl homocysteine (PHC) with further tailoring of the micelle using targeting peptides (cRGD) and labeling with far-red fluorescent dye for tracking during cellular uptake studies. Our results revealed that the TRaM was approximately 10 nm in diameter and underwent successful internalization in Human Umbilical Vein EC (HUVEC) lines. Uptake efficiency of TRaM nanoparticles was improved with the addition of a targeting moiety. In addition, our TRaM therapy was able to downregulate both mouse cardiac endothelial cell (MCEC) and HUVEC production and release of the pro-inflammatory cytokines, IL-6 and IL-8 in normal oxygen tension and hypoxic conditions. We were also able to demonstrate a dose-dependent uptake of TRaM therapy into biologic tissues ex vivo. Taken together, these data demonstrate the feasibility of targeted drug delivery in transplantation, which has the potential for conferring local immunosuppressive effects without systemic consequences while also dampening endothelial cell injury responses.

20.
Part Part Syst Charact ; 32(4): 448-457, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25999665

ABSTRACT

Targeted drug delivery using epidermal growth factor peptide-targeted gold nanoparticles (EGFpep-Au NPs) is investigated as a novel approach for delivery of photodynamic therapy (PDT) agents, specifically Pc 4, to cancer. In vitro studies of PDT show that EGFpep-Au NP-Pc 4 is twofold better at killing tumor cells than free Pc 4 after increasing localization in early endosomes. In vivo studies show that targeting with EGFpep-Au NP-Pc 4 improves accumulation of fluorescence of Pc 4 in subcutaneous tumors by greater than threefold compared with untargeted Au NPs. Targeted drug delivery and treatment success can be imaged via the intrinsic fluorescence of the PDT drug Pc 4. Using Pc 4 fluorescence, it is demonstrated in vivo that EGFpep-Au NP-Pc 4 impacts biodistribution of the NPs by decreasing the initial uptake by the reticuloendothelial system (RES) and by increasing the amount of Au NPs circulating in the blood 4 h after IV injection. Interestingly, in vivo PDT with EGFpep-Au NP-Pc 4 results in interrupted tumor growth when compared with EGFpep-Au NP control mice when selectively activated with light. These data demonstrate that EGFpep-Au NP-Pc 4 utilizes cancer-specific biomarkers to improve drug delivery and therapeutic efficacy over untargeted drug delivery.

SELECTION OF CITATIONS
SEARCH DETAIL