Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Cent J ; 7: 84, 2013.
Article in English | MEDLINE | ID: mdl-23675917

ABSTRACT

BACKGROUND: This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. RESULTS: The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. CONCLUSION: This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens.

2.
Chemosphere ; 88(1): 131-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22475153

ABSTRACT

We surveyed four different river systems in the Greater Montreal region, upstream and downstream of entry points of contamination, from April 2007 to January 2009. The studied compounds belong to three different groups: PPCPs (caffeine, carbamazepine, naproxen, gemfibrozil, and trimethoprim), hormones (progesterone, estrone, and estradiol), and triazine herbicides and their metabolites (atrazine, deethylatrazine, deisopropylatrazine, simazine, and cyanazine). In the system A, B, and C having low flow rate and high TOC, we observed the highest detection frequencies and mass flows of PPCPs compared to the other compounds, reflecting discharge of urban contaminations through WWTPs and CSOs. However, in River D, having high flow rate and low TOC, comparable frequency of detection of triazine and their by-products and PPCPs, reflecting cumulative loads of these compounds from the Great Lakes as well as persistency against natural attenuation processes. Considering large differences in the removal efficiencies of caffeine and carbamazepine, a high ratio of caffeine/carbamazepine might be an indicative of a greater proportion of raw sewage versus treated wastewater in surface waters. In addition, caffeine appeared to be a promising indicator of recent urban fecal contaminations, as shown by the significant correlation with FC (R(2)=0.45), while carbamazepine is a good indicator of cumulative persistence compounds.


Subject(s)
Caffeine/analysis , Drinking Water/chemistry , Environmental Monitoring , Feces/chemistry , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , Canada , Endocrine Disruptors/analysis , Herbicides/analysis , Herbicides/metabolism , Lakes , Rivers/chemistry
3.
Chemosphere ; 79(11): 1056-63, 2010 May.
Article in English | MEDLINE | ID: mdl-20403630

ABSTRACT

This study investigates the aqueous degradation by ozone of two target cytostatic drugs, cyclophosphamide and methotrexate. A column switching technique for on-line solid phase extraction (SPE) coupled to electro-spray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for the simultaneous detection of the trace contaminants. The second-order kinetic rate constants for the reaction of cyclophosphamide with molecular ozone and hydroxyl radicals were determined in bench-scale experiments at pH 8.10. The molecular ozone oxidation kinetics was studied in buffered ultrapure water and compared to the oxidation kinetics in natural water from a municipal drinking water treatment plant in the province of Quebec (Canada). For cyclophosphamide, the degradation rate constant with molecular ozone in ultrapure water was low (k(O3)=3.3+/-0.2M(-1)s(-1)) and the extent of oxidation was linearly correlated to the ozone exposure. The impact of water quality matrix on oxidation efficacy was not significant during direct ozone reaction (k(O3) =2.9+/-0.3M(-1)s(-1)). The rate constant with hydroxyl radicals was higher at 2.0 x 10(9) M(-1)s(-1). Methotrexate reacted quickly with molecular ozone at dosages typically applied in drinking water treatment (k(O3)>3.6 x 10(3)M(-1)s(-1)). Overall, the results confirmed that organic compounds reactivity with ozone was dependent of their chemical structure. Ozone was very effective against methotrexate but high oxidant concentration x contact time (CT) values were required to completely remove cyclophosphamide from drinking water. Further studies should be conducted in order to identify the ozonation by-products and explore the impact of ozone on their degradation and toxicity.


Subject(s)
Antimetabolites, Antineoplastic/chemistry , Cyclophosphamide/chemistry , Methotrexate/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Antimetabolites, Antineoplastic/analysis , Chromatography, High Pressure Liquid , Cyclophosphamide/analysis , Hydrogen-Ion Concentration , Kinetics , Methotrexate/analysis , Oxidation-Reduction , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Water Pollutants, Chemical/analysis , Water Purification , Water Supply
4.
Environ Sci Technol ; 44(1): 269-77, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20039751

ABSTRACT

The 1990s epidemiological studies by Payment and colleagues suggested that an increase in gastrointestinal illnesses observed in the population consuming tap water from a system meeting all water quality regulations might be associated with distribution system deficiencies. In the current study, the vulnerability of this distribution system to microbial intrusion was assessed by characterizing potential sources of contamination near pipelines and monitoring the frequency and magnitude of negative pressures. Bacterial indicators of fecal contamination were recovered more frequently in the water from flooded air-valve vaults than in the soil or water from pipe trenches. The level of fecal contamination in these various sources was more similar to levels from river water rather than wastewater. Because of its configuration, this distribution system is vulnerable to negative pressures when pressure values out of the treatment plant reach or drop below 172 kPa (25 psi), which occurred nine times during a monitoring period of 17 months. The results from this investigation suggest that this distribution system is vulnerable to contamination by intrusion. Comparison of the frequency of occurrence of negative pressure events and repair rates with data from other distribution systems suggests that the system studied by Payment and colleagues is not atypical.


Subject(s)
Gastrointestinal Diseases/epidemiology , Water Microbiology , Water Supply , Bacteria/classification , Bacteria/isolation & purification , Canada/epidemiology , Feces/microbiology , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL