Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6405, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302779

ABSTRACT

Resistance artery vasodilation in response to hypoxia is essential for matching tissue oxygen and demand. In hypoxia, erythrocytic hemoglobin tetramers produce nitric oxide through nitrite reduction. We hypothesized that the alpha subunit of hemoglobin expressed in endothelium also facilitates nitrite reduction proximal to smooth muscle. Here, we create two mouse strains to test this: an endothelial-specific alpha globin knockout (EC Hba1Δ/Δ) and another with an alpha globin allele mutated to prevent alpha globin's inhibitory interaction with endothelial nitric oxide synthase (Hba1WT/Δ36-39). The EC Hba1Δ/Δ mice had significantly decreased exercise capacity and intracellular nitrite consumption in hypoxic conditions, an effect absent in Hba1WT/Δ36-39 mice. Hypoxia-induced vasodilation is significantly decreased in arteries from EC Hba1Δ/Δ, but not Hba1WT/Δ36-39 mice. Hypoxia also does not lower blood pressure in EC Hba1Δ/Δ mice. We conclude the presence of alpha globin in resistance artery endothelium acts as a nitrite reductase providing local nitric oxide in response to hypoxia.


Subject(s)
Nitric Oxide , Nitrite Reductases , Mice , Animals , Nitrite Reductases/genetics , Nitrite Reductases/pharmacology , Nitric Oxide/pharmacology , Nitrites , alpha-Globins/genetics , Hypoxia , Endothelium, Vascular , Hemoglobins/genetics , Vasodilation/physiology
2.
Biol Trace Elem Res ; 183(2): 325-334, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28905315

ABSTRACT

Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na+/K+-ATPase, we aimed to determine whether acute cadmium administration (10 µM) alters the participation of K+ channels, voltage-activated calcium channel, and Na+/K+-ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K+ channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K+ channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca2+-activated K+ channels-SKCa), iberiotoxin (a selective blocker of large-conductance Ca2+-activated K+ channels-BKCa), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na+/K+-ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SKCa and BKCa) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na+/K+-ATPase activity.


Subject(s)
Cadmium/pharmacology , Metals, Heavy/pharmacology , Potassium Channels, Calcium-Activated/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Apamin/pharmacology , Calcium Channel Blockers/pharmacology , Potassium Channels/metabolism , Rats , Verapamil/pharmacology
3.
Hypertension ; 68(6): 1494-1503, 2016 12.
Article in English | MEDLINE | ID: mdl-27802421

ABSTRACT

The ability of hemoglobin to scavenge the potent vasodilator nitric oxide (NO) in the blood has been well established as a mechanism of vascular tone homeostasis. In endothelial cells, the alpha chain of hemoglobin (hereafter, alpha globin) and endothelial NO synthase form a macromolecular complex, providing a sink for NO directly adjacent to the production source. We have developed an alpha globin mimetic peptide (named HbαX) that displaces endogenous alpha globin and increases bioavailable NO for vasodilation. Here we show that, in vivo, HbαX administration increases capillary oxygenation and blood flow in arterioles acutely and produces a sustained decrease in systolic blood pressure in normal and angiotensin II-induced hypertensive states. HbαX acts with high specificity and affinity to endothelial NO synthase, without toxicity to liver and kidney and no effect on p50 of O2 binding in red blood cells. In human vasculature, HbαX blunts vasoconstrictive response to cumulative doses of phenylephrine, a potent constricting agent. By binding to endothelial NO synthase and displacing endogenous alpha globin, HbαX modulates important metrics of vascular function, increasing vasodilation and flow in the resistance vasculature.


Subject(s)
Hypertension/physiopathology , Nitric Oxide Synthase/metabolism , Vascular Resistance/physiology , Vasodilator Agents/pharmacology , alpha-Globins/metabolism , Angiotensin II/pharmacology , Animals , Blood Flow Velocity/physiology , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hemodynamics/drug effects , Humans , Mice , Random Allocation , Vascular Resistance/drug effects
4.
Life Sci ; 143: 89-97, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26523985

ABSTRACT

AIMS: Iron overload in animal models and humans increases oxidative stress and induces cardiomyopathy. It has been suggested that the vasculature is also damaged, but the impacts on vascular reactivity and the underlying mechanisms remain poorly understood. In this study, we aimed to identify possible changes in the vascular reactivity of aortas from iron overloaded rats and investigate the underlying mechanisms. MAIN METHODS: Rats were treated with 100mg/kg/day iron-dextran, ip, five days a week for four weeks and compared to a saline-injected group. KEY FINDINGS: Chronic iron administration increased serum iron and transferrin saturation with significant deposition in the liver. Additionally, iron overload significantly increased the vasoconstrictor response in aortic rings as assessed in vitro, with reduced influence of endothelial denudation or l-NAME incubation on the vascular reactivity. In vitro assay with DAF-2 indicated reduced NO production in the iron overload group. Iron overload-induced vascular hyperactivity was reversed by incubation with tiron, catalase, apocynin, allopurinol and losartan. Moreover, malondialdehyde was elevated in the plasma, and O2(•-) generation and NADPH oxidase subunit (p22phox) expression were increased in the aortas of iron-loaded rats. SIGNIFICANCE: Our results demonstrated that chronic iron overload is associated with altered vascular reactivity and the loss of endothelial modulation of the vascular tone. This iron loading-induced endothelial dysfunction and reduced nitric oxide bioavailability may be a result of increased production of reactive oxygen species and local renin-angiotensin system activation.


Subject(s)
Endothelium, Vascular/metabolism , Iron Overload/metabolism , Nitric Oxide/metabolism , Oxidative Stress/physiology , Animals , Biological Availability , Chronic Disease , Endothelium, Vascular/pathology , Iron Overload/pathology , Male , Nitric Oxide/antagonists & inhibitors , Organ Culture Techniques , Rats , Rats, Wistar
5.
PLoS One ; 10(3): e0120965, 2015.
Article in English | MEDLINE | ID: mdl-25807237

ABSTRACT

We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct) and treatment with 100 ppm of lead (Pb), which was added to drinking water, for 30 days. Systolic blood pressure (BP) was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 µg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM-100 mM). Following N-nitro-L arginine methyl ester (L-NAME) administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD) administration. Catalase, diethyldithiocarbamic acid (DETCA), and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA) potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.


Subject(s)
Aorta/drug effects , Hydrogen Peroxide/metabolism , Lead/toxicity , Acetophenones/metabolism , Animals , Aorta/metabolism , Aorta/physiopathology , Blood Pressure/drug effects , Catalase/metabolism , Ditiocarb/metabolism , Lead/blood , Male , NG-Nitroarginine Methyl Ester/pharmacology , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Potassium Channels/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/pharmacology , Tetraethylammonium/pharmacology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
6.
Lipids Health Dis ; 13: 107, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24993607

ABSTRACT

BACKGROUND: Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. METHODS: Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. RESULTS: Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. CONCLUSIONS: These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function.


Subject(s)
Aorta/physiology , Cardiovascular Agents/administration & dosage , Cyclooxygenase 2/metabolism , Linseed Oil/administration & dosage , Phenylephrine/pharmacology , Superoxides/metabolism , Vasoconstrictor Agents/pharmacology , Administration, Oral , Animals , Aorta/drug effects , C-Reactive Protein/metabolism , Male , Nitroprusside/pharmacology , Oxidative Stress , Prostaglandins/pharmacology , Rats, Wistar , Vasodilator Agents/pharmacology
7.
PLoS One ; 9(5): e96900, 2014.
Article in English | MEDLINE | ID: mdl-24841481

ABSTRACT

We investigated the cardiovascular effects of lead exposure, emphasising its direct action on myocardial contractility. Male Wistar rats were sorted randomly into two groups: control (Ct) and treatment with 100 ppm of lead (Pb) in the drinking water. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anaesthetised and haemodynamic parameters and contractility of the left ventricular papillary muscles were recorded. Blood and tissue samples were properly stored for further biochemical investigations. Statistical analyses were considered to be significant at p<0.05. The lead concentrations in the blood reached approximately 13 µg/dL, while the bone was the site of the highest deposition of this metal. BP in the Pb-treated group was higher from the first week of lead exposure and remained at the same level over the next four weeks. Haemodynamic evaluations revealed increases in systolic (Ct: 96 ± 3.79 vs. Pb: 116 ± 1.37 mmHg) and diastolic blood pressure (Ct: 60 ± 2.93 vs. Pb: 70 ± 3.38 mmHg), left ventricular systolic pressure (Ct: 104 ± 5.85 vs. Pb: 120 ± 2.51 mmHg) and heart rate (Ct: 307 ± 10 vs. Pb: 348 ± 16 bpm). Lead treatment did not alter the force and time derivatives of the force of left ventricular papillary muscles that were contracting isometrically. However, our results are suggestive of changes in the kinetics of calcium (Ca++) in cardiomyocytes increased transarcolemmal Ca++ influx, low Ca++ uptake by the sarcoplasmic reticulum and high extrusion by the sarcolemma. Altogether, these results show that despite the increased Ca++ influx that was induced by lead exposure, the myocytes had regulatory mechanisms that prevented increases in force, as evidenced in vivo by the increased systolic ventricular pressure.


Subject(s)
Blood Pressure/drug effects , Calcium/metabolism , Lead/toxicity , Animals , Biological Transport/drug effects , Male , Myocardial Contraction/drug effects , Rats , Rats, Wistar , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...