Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
3.
Proc Natl Acad Sci U S A ; 121(12): e2318996121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478688

ABSTRACT

Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.


Subject(s)
Diterpenes , Retinaldehyde , Rhodopsin , Isomerism , Protein Conformation , Rhodopsin/metabolism , Retinaldehyde/chemistry
4.
J Mol Biol ; 436(5): 168375, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38092286

ABSTRACT

Rhodopsin guanylyl cyclases (RGCs) belong to the class of enzymerhodopsins catalyzing the transition from GTP into the second messenger cGMP, whereas light-regulation of enzyme activity is mediated by a membrane-bound microbial rhodopsin domain, that holds the catalytic center inactive in the dark. Structural determinants for activation of the rhodopsin moiety eventually leading to catalytic activity are largely unknown. Here, we investigate the mechanistic role of the D283-C259 (DC) pair that is hydrogen bonded via a water molecule as a crucial functional motif in the homodimeric C. anguillulae RGC. Based on a structural model of the DC pair in the retinal binding pocket obtained by MD simulation, we analyzed formation and kinetics of early and late photocycle intermediates of the rhodopsin domain wild type and specific DC pair mutants by combined UV-Vis and FTIR spectroscopy at ambient and cryo-temperatures. By assigning specific infrared bands to S-H vibrations of C259 we are able to show that the DC pair residues are tightly coupled. We show that deprotonation of D283 occurs already in the inactive L state as a prerequisite for M state formation, whereas structural changes of C259 occur in the active M state and early cryo-trapped intermediates. We propose a comprehensive molecular model for formation of the M state that activates the catalytic moiety. It involves light induced changes in bond strength and hydrogen bonding of the DC pair residues from the early J state to the active M state and explains the retarding effect of C259 mutants.


Subject(s)
Blastocladiomycota , Guanylate Cyclase , Rhodopsin , Blastocladiomycota/enzymology , Blastocladiomycota/metabolism , Guanylate Cyclase/chemistry , Guanylate Cyclase/genetics , Light , Models, Molecular , Rhodopsin/chemistry , Rhodopsin/genetics , Spectroscopy, Fourier Transform Infrared
5.
J Phys Chem Lett ; 14(41): 9291-9295, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37815402

ABSTRACT

The recently discovered Neorhodopsin (NeoR) exhibits absorption and emission maxima in the near-infrared spectral region, which together with the high fluorescence quantum yield makes it an attractive retinal protein for optogenetic applications. The unique optical properties can be rationalized by a theoretical model that predicts a high charge transfer character in the electronic ground state (S0) which is otherwise typical of the excited state S1 in canonical retinal proteins. The present study sets out to assess the electronic structure of the NeoR chromophore by resonance Raman (RR) spectroscopy since frequencies and relative intensities of RR bands are controlled by the ground and excited state's properties. The RR spectra of NeoR differ dramatically from those of canonical rhodopsins but can be reliably reproduced by the calculations carried out within two different structural models. The remarkable agreement between the experimental and calculated spectra confirms the consistency and robustness of the theoretical approach.


Subject(s)
Rhodopsin , Rhodopsins, Microbial , Rhodopsins, Microbial/chemistry , Rhodopsin/chemistry , Spectrum Analysis, Raman , Retina , Coloring Agents
6.
Proc Natl Acad Sci U S A ; 120(44): e2310600120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871207

ABSTRACT

Light perception for orientation in zoospore-forming fungi is linked to homo- or heterodimeric rhodopsin-guanylyl cyclases (RGCs). Heterodimeric RGCs, first identified in the chytrid Rhizoclosmatium globosum, consist of an unusual near-infrared absorbing highly fluorescent sensitizer neorhodopsin (NeoR) that is paired with a visual light-absorbing rhodopsin responsible for enzyme activation. Here, we present a comprehensive analysis of the distribution of RGC genes in early-branching fungi using currently available genetic data. Among the characterized RGCs, we identified red-sensitive homodimeric RGC variants with maximal light activation close to 600 nm, which allow for red-light control of GTP to cGMP conversion in mammalian cells. Heterodimeric RGC complexes have evolved due to a single gene duplication within the branching of Chytridiales and show a spectral range for maximal light activation between 480 to 600 nm. In contrast, the spectral sensitivity of NeoRs is reaching into the near-infrared range with maximal absorption between 641 and 721 nm, setting the low energy spectral edge of rhodopsins so far. Based on natural NeoR variants and mutational studies, we reevaluated the role of the counterion-triad proposed to cause the extreme redshift. With the help of chimera constructs, we disclose that the cyclase domain is crucial for functioning as homo- or heterodimers, which enables the adaptation of the spectral sensitivity by modular exchange of the photosensor. The extreme spectral plasticity of retinal chromophores in native photoreceptors provides broad perspectives on the achievable spectral adaptation for rhodopsin-based molecular tools ranging from UVB into the near-infrared.


Subject(s)
Retina , Rhodopsin , Animals , Rhodopsin/genetics , Photoreceptor Cells , Light , Guanylate Cyclase/genetics , Mammals
7.
Elife ; 102021 10 19.
Article in English | MEDLINE | ID: mdl-34665128

ABSTRACT

Enzymerhodopsins represent a recently discovered class of rhodopsins which includes histidine kinase rhodopsin, rhodopsin phosphodiesterases, and rhodopsin guanylyl cyclases (RGCs). The regulatory influence of the rhodopsin domain on the enzyme activity is only partially understood and holds the key for a deeper understanding of intra-molecular signaling pathways. Here, we present a UV-Vis and FTIR study about the light-induced dynamics of a RGC from the fungus Catenaria anguillulae, which provides insights into the catalytic process. After the spectroscopic characterization of the late rhodopsin photoproducts, we analyzed truncated variants and revealed the involvement of the cytosolic N-terminus in the structural rearrangements upon photo-activation of the protein. We tracked the catalytic reaction of RGC and the free GC domain independently by UV-light induced release of GTP from the photolabile NPE-GTP substrate. Our results show substrate binding to the dark-adapted RGC and GC alike and reveal differences between the constructs attributable to the regulatory influence of the rhodopsin on the conformation of the binding pocket. By monitoring the phosphate rearrangement during cGMP and pyrophosphate formation in light-activated RGC, we were able to confirm the M state as the active state of the protein. The described setup and experimental design enable real-time monitoring of substrate turnover in light-activated enzymes on a molecular scale, thus opening the pathway to a deeper understanding of enzyme activity and protein-protein interactions.


Subject(s)
Blastocladiomycota/genetics , Cyclic GMP/genetics , Fungal Proteins/genetics , Guanylate Cyclase/genetics , Rhodopsin/genetics , Blastocladiomycota/metabolism , Cyclic GMP/metabolism , Fungal Proteins/metabolism , Guanylate Cyclase/metabolism , Rhodopsin/metabolism , Spectroscopy, Fourier Transform Infrared
8.
Front Mol Biosci ; 8: 806922, 2021.
Article in English | MEDLINE | ID: mdl-35127823

ABSTRACT

The recently discovered Rhodopsin-cyclases from Chytridiomycota fungi show completely unexpected properties for microbial rhodopsins. These photoreceptors function exclusively as heterodimers, with the two subunits that have very different retinal chromophores. Among them is the bimodal photoswitchable Neorhodopsin (NeoR), which exhibits a near-infrared absorbing, highly fluorescent state. These are features that have never been described for any retinal photoreceptor. Here these properties are discussed in the context of color-tuning approaches of retinal chromophores, which have been extensively studied since the discovery of the first microbial rhodopsin, bacteriorhodopsin, in 1971 (Oesterhelt et al., Nature New Biology, 1971, 233 (39), 149-152). Further a brief review about the concept of heterodimerization is given, which is widely present in class III cyclases but is unknown for rhodopsins. NIR-sensitive retinal chromophores have greatly expanded our understanding of the spectral range of natural retinal photoreceptors and provide a novel perspective for the development of optogenetic tools.

9.
Nat Commun ; 11(1): 5682, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173168

ABSTRACT

The Rhizoclosmatium globosum genome encodes three rhodopsin-guanylyl cyclases (RGCs), which are predicted to facilitate visual orientation of the fungal zoospores. Here, we show that RGC1 and RGC2 function as light-activated cyclases only upon heterodimerization with RGC3 (NeoR). RGC1/2 utilize conventional green or blue-light-sensitive rhodopsins (λmax = 550 and 480 nm, respectively), with short-lived signaling states, responsible for light-activation of the enzyme. The bistable NeoR is photoswitchable between a near-infrared-sensitive (NIR, λmax = 690 nm) highly fluorescent state (QF = 0.2) and a UV-sensitive non-fluorescent state, thereby modulating the activity by NIR pre-illumination. No other rhodopsin has been reported so far to be functional as a heterooligomer, or as having such a long wavelength absorption or high fluorescence yield. Site-specific mutagenesis and hybrid quantum mechanics/molecular mechanics simulations support the idea that the unusual photochemical properties result from the rigidity of the retinal chromophore and a unique counterion triad composed of two glutamic and one aspartic acids. These findings substantially expand our understanding of the natural potential and limitations of spectral tuning in rhodopsin photoreceptors.


Subject(s)
Chytridiomycota/genetics , Rhodopsin , Computational Biology , Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/isolation & purification , Genes, Fungal , Genome, Fungal , Mutagenesis, Site-Directed , Photochemical Processes , Photoreceptor Cells/physiology , Rhodopsin/biosynthesis , Rhodopsin/chemistry , Rhodopsin/genetics
10.
J Am Chem Soc ; 142(26): 11464-11473, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32475117

ABSTRACT

UV-absorbing rhodopsins are essential for UV vision and sensing in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins, which bind a protonated retinal Schiff base for light absorption, UV-absorbing rhodopsins bind an unprotonated retinal Schiff base. Thus far, the photoreaction dynamics and mechanisms of UV-absorbing rhodopsins have remained essentially unknown. Here, we report the complete excited- and ground-state dynamics of the UV form of histidine kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy, covering time scales from femtoseconds to milliseconds. We found that energy-level ordering is inverted with respect to visible-absorbing rhodopsins, with an optically forbidden low-lying S1 excited state that has Ag- symmetry and a higher-lying UV-absorbing S2 state of Bu+ symmetry. UV-photoexcitation to the S2 state elicits a unique dual-isomerization reaction: first, C13═C14 cis-trans isomerization occurs during S2-S1 evolution in <100 fs. This very fast reaction features the remarkable property that the newly formed isomer appears in the excited state rather than in the ground state. Second, C15═N16 anti-syn isomerization occurs on the S1-S0 evolution to the ground state in 4.8 ps. We detected two ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground state. These isomers become protonated in 58 µs and 3.2 ms, respectively, resulting in formation of the blue-absorbing form of HKR1. Our results constitute a benchmark of UV-induced photochemistry of animal and microbial rhodopsins.

11.
Nat Commun ; 10(1): 3315, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346176

ABSTRACT

Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. ChRs desensitize under continuous bright-light illumination, resulting in a significant decline of photocurrents. Here we describe a metagenomically identified family of phylogenetically distinct anion-conducting ChRs (designated MerMAIDs). MerMAIDs almost completely desensitize during continuous illumination due to accumulation of a late non-conducting photointermediate that disrupts the ion permeation pathway. MerMAID desensitization can be fully explained by a single photocycle in which a long-lived desensitized state follows the short-lived conducting state. A conserved cysteine is the critical factor in desensitization, as its mutation results in recovery of large stationary photocurrents. The rapid desensitization of MerMAIDs enables their use as optogenetic silencers for transient suppression of individual action potentials without affecting subsequent spiking during continuous illumination. Our results could facilitate the development of optogenetic tools from metagenomic databases and enhance general understanding of ChR function.


Subject(s)
Anions/metabolism , Bacteria/genetics , Channelrhodopsins/genetics , Multigene Family , Viruses/genetics , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Channelrhodopsins/chemistry , Channelrhodopsins/metabolism , Humans , Kinetics , Light , Metagenome , Neurons/metabolism , Optogenetics , Phylogeny , Seawater/microbiology , Seawater/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Viruses/classification , Viruses/isolation & purification , Viruses/metabolism
12.
Nano Lett ; 19(5): 3104-3114, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30950626

ABSTRACT

Photosensitive proteins embedded in the cell membrane (about 5 nm thickness) act as photoactivated proton pumps, ion gates, enzymes, or more generally, as initiators of stimuli for the cell activity. They are composed of a protein backbone and a covalently bound cofactor (e.g. the retinal chromophore in bacteriorhodopsin (BR), channelrhodopsin, and other opsins). The light-induced conformational changes of both the cofactor and the protein are at the basis of the physiological functions of photosensitive proteins. Despite the dramatic development of microscopy techniques, investigating conformational changes of proteins at the membrane monolayer level is still a big challenge. Techniques based on atomic force microscopy (AFM) can detect electric currents through protein monolayers and even molecular binding forces in single-protein molecules but not the conformational changes. For the latter, Fourier-transform infrared spectroscopy (FTIR) using difference-spectroscopy mode is typically employed, but it is performed on macroscopic liquid suspensions or thick films containing large amounts of purified photosensitive proteins. In this work, we develop AFM-assisted, tip-enhanced infrared difference-nanospectroscopy to investigate light-induced conformational changes of the bacteriorhodopsin mutant D96N in single submicrometric native purple membrane patches. We obtain a significant improvement compared with the signal-to-noise ratio of standard IR nanospectroscopy techniques by exploiting the field enhancement in the plasmonic nanogap that forms between a gold-coated AFM probe tip and an ultraflat gold surface, as further supported by electromagnetic and thermal simulations. IR difference-spectra in the 1450-1800 cm-1 range are recorded from individual patches as thin as 10 nm, with a diameter of less than 500 nm, well beyond the diffraction limit for FTIR microspectroscopy. We find clear spectroscopic evidence of a branching of the photocycle for BR molecules in direct contact with the gold surfaces, with equal amounts of proteins either following the standard proton-pump photocycle or being trapped in an intermediate state not directly contributing to light-induced proton transport. Our results are particularly relevant for BR-based optoelectronic and energy-harvesting devices, where BR molecular monolayers are put in contact with metal surfaces, and, more generally, for AFM-based IR spectroscopy studies of conformational changes of proteins embedded in intrinsically heterogeneous native cell membranes.


Subject(s)
Bacteriorhodopsins/ultrastructure , Membrane Proteins/ultrastructure , Mutant Proteins/ultrastructure , Proton Pumps/ultrastructure , Bacteriorhodopsins/chemistry , Bacteriorhodopsins/genetics , Electromagnetic Fields , Ion Transport/genetics , Membrane Proteins/chemistry , Microscopy, Atomic Force , Mutant Proteins/chemistry , Mutant Proteins/genetics , Nanotechnology/methods , Protein Conformation , Proton Pumps/chemistry , Purple Membrane/chemistry , Purple Membrane/ultrastructure , Spectroscopy, Fourier Transform Infrared
13.
Curr Opin Struct Biol ; 57: 118-126, 2019 08.
Article in English | MEDLINE | ID: mdl-30954887

ABSTRACT

Enzymerhodopsins are a recently discovered class of natural rhodopsin-based photoreceptors with light-regulated enzyme activity. Currently, three different types of these fusion proteins with an N-terminal type-1 rhodopsin and a C-terminal enzyme domain have been identified, but their physiological relevance is mostly unknown. Among these, histidine kinase rhodopsins (HKR) are photo-regulated two-component-like signaling systems that trigger a phosphorylation cascade, whereas rhodopsin phosphodiesterase (RhoPDE) or rhodopsin guanylyl cyclase (RhGC) show either light-activated hydrolysis or production of cyclic nucleotides. RhGC, the best characterized enzymerhodopsin, is involved in the phototaxis of fungal zoospores and allows for optically controlled production of cyclic nucleotides in different cell-types. These photoreceptors have great optogenetic potential and possess several advantages over the hitherto existing tools to manipulate cyclic-nucleotide dynamics in living cells.


Subject(s)
Biocatalysis , Enzymes/metabolism , Optogenetics/methods , Rhodopsin/metabolism , Rhodopsin/chemistry
14.
Nat Commun ; 9(1): 2046, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29799525

ABSTRACT

The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsin-guanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio >1000. After light excitation the putative signaling state forms with τ = 31 ms and decays with τ = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 Å) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light.


Subject(s)
Adenylyl Cyclases/chemistry , Blastocladiomycota/enzymology , Cyclic AMP/chemistry , Cyclic GMP/chemistry , Fungal Proteins/chemistry , Guanylate Cyclase/chemistry , Rhodopsin/chemistry , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Animals , Binding Sites , Blastocladiomycota/chemistry , Blastocladiomycota/genetics , Crystallization , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Fungal Proteins/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Models, Molecular , Protein Binding , Protein Domains , Rats , Rhodopsin/metabolism
15.
Phys Chem Chem Phys ; 19(45): 30402-30409, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29125160

ABSTRACT

Anion channelrhodopsins (ACRs) are of great interest due to their ability to inhibit electrical signaling in optogenetic experiments. The photochemistry of ACRs is currently poorly understood and an improved understanding would be beneficial for rational design of ACRs with modified properties. Activation/deactivation of ACRs involves a series of photoreactions ranging from femtoseconds to seconds, thus real-time observation is essential to comprehend the full complexity of the photochemical processes. Here we investigate the photocycle of an ACR from Proteomonas sulcata (PsACR1), which is valuable for optogenetic applications due to the red-shifted absorption and action spectra compared to the prototype ACRs from Guillardia theta: GtACR1 and GtACR2, and the fast channel closing properties. From femto-to-submillisecond transient absorption spectroscopy, flash photolysis, and point mutations of acidic residues near the retinal Schiff base (RSB), E64, and D230, we found that the photoisomerization occurs in ∼500 fs independent of the protonation state of E64. Notably, E64 is involved in the rearrangement of the hydrogen-bond network near the RSB after photoisomerization. Furthermore, we suggest that E64 works as a primary proton acceptor during deprotonation of the RSB as has been proposed for GtACR1. Our findings allow for a deeper understanding of the photochemistry on the activation/deactivation of ACRs.

16.
J Biol Chem ; 291(8): 4121-7, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26740624

ABSTRACT

Chloride conducting channelrhodopsins (ChloCs) are new members of the optogenetic toolbox that enable neuronal inhibition in target cells. Originally, ChloCs have been engineered from cation conducting channelrhodopsins (ChRs), and later identified in a cryptophyte alga genome. We noticed that the sequence of a previously described Proteomonas sulcata ChR (PsChR1) was highly homologous to the naturally occurring and previously reported ChloCs GtACR1/2, but was not recognized as an anion conducting channel. Based on electrophysiological measurements obtained under various ionic conditions, we concluded that the PsChR1 photocurrent at physiological conditions is strongly inward rectifying and predominantly carried by chloride. The maximum activation was noted at excitation with light of 540 nm. An initial spectroscopic characterization of purified protein revealed that the photocycle and the transport mechanism of PsChR1 differ significantly from cation conducting ChRs. Hence, we concluded that PsChR1 is an anion conducting ChR, now renamed PsACR1, with a red-shifted absorption suited for multicolor optogenetic experiments in combination with blue light absorbing cation conducting ChRs.


Subject(s)
Chloride Channels/chemistry , Cryptophyta/chemistry , Light , Rhodopsin/chemistry , Chloride Channels/genetics , Chloride Channels/metabolism , Cryptophyta/genetics , Cryptophyta/metabolism , Ion Transport/physiology , Rhodopsin/genetics , Rhodopsin/metabolism
17.
J Biol Chem ; 288(31): 22607-20, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23766513

ABSTRACT

The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-Å high resolution crystal structure. Additionally, we compared the S1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry.


Subject(s)
Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Catalysis
18.
J Biol Chem ; 286(18): 15964-72, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21367867

ABSTRACT

Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the Q(B) site in the D1 subunit and thus block the electron transfer from Q(A) to Q(B). Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the Q(B) site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of Q(A), which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334-342). This discovery is discussed in the context of proton transfer to the lumen.


Subject(s)
Cyanobacteria/enzymology , Herbicides/chemistry , Photosystem II Protein Complex/chemistry , Triazines/chemistry , Crystallography, X-Ray , Herbicides/pharmacology , Photosystem II Protein Complex/antagonists & inhibitors , Photosystem II Protein Complex/metabolism , Protein Structure, Quaternary , Structure-Activity Relationship , Triazines/pharmacology
19.
J Biol Chem ; 285(34): 26255-62, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20558739

ABSTRACT

The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first crystallization and structural analysis of the monomeric form of PSIIcc with high oxygen evolution capacity, isolated from Thermosynechococcus elongatus. The crystals belong to the space group C222(1), contain one monomer per asymmetric unit, and diffract to a resolution of 3.6 A. The x-ray diffraction pattern of the PSIIcc-monomer crystals exhibit less anisotropy (dependence of resolution on crystal orientation) compared with crystals of dimeric PSIIcc, and the packing of the molecules within the unit cell is different. In the monomer, 19 protein subunits, 35 chlorophylls, two pheophytins, the non-heme iron, the primary plastoquinone Q(A), two heme groups, 11 beta-carotenes, 22 lipids, seven detergent molecules, and the Mn(4)Ca cluster of the water oxidizing complex could be assigned analogous to the dimer. Based on the new structural information, the roles of lipids and protein subunits in dimer formation of PSIIcc are discussed. Due to the lack of non-crystallographic symmetry and the orientation of the membrane normal of PSIIcc perpendicular ( approximately 87 degrees ) to the crystallographic b-axis, further information about the structure of the Mn(4)Ca cluster is expected to become available from orientation-dependent spectroscopy on this new crystal form.


Subject(s)
Cyanobacteria/chemistry , Photosystem II Protein Complex/chemistry , Anisotropy , Calcium , Crystallography, X-Ray , Lipids , Macromolecular Substances/chemistry , Manganese , Protein Multimerization , Protein Subunits
20.
Chemphyschem ; 11(6): 1160-71, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20352642

ABSTRACT

The photosynthetic oxygen-evolving photosystem II (PSII) is the only known biochemical system that is able to oxidize water molecules and thereby generates almost all oxygen in the Earth's atmosphere. The elucidation of the structural and mechanistic aspects of PSII keeps scientists all over the world engaged since several decades. In this Minireview, we outline the progress in understanding PSII based on the most recent crystal structure at 2.9 A resolution. A likely position of the chloride ion, which is known to be required for the fast turnover of water oxidation, could be determined in native PSII and is compared with work on bromide and iodide substituted PSII. Moreover, eleven new integral lipids could be assigned, emphasizing the importance of lipids for the perfect function of PSII. A third plastoquinone molecule (Q(C)) and a second quinone transfer channel are revealed, making it possible to consider different mechanisms for the exchange of plastoquinone/plastoquinol molecules. In addition, possible transport channels for water, dioxygen and protons are identified.


Subject(s)
Photosystem II Protein Complex/chemistry , Binding Sites , Crystallography, X-Ray , Cyanobacteria/enzymology , Lipids/chemistry , Oxidation-Reduction , Photosystem II Protein Complex/metabolism , Plastoquinone/chemistry , Protein Conformation , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...