Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 14879, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050506

ABSTRACT

We performed a high-throughput phenotypic whole cell screen of Mycobacterium tuberculosis against a diverse chemical library of approximately 100,000 compounds from the AbbVie corporate collection and identified 24 chemotypes with anti-tubercular activity. We selected two series for further exploration and conducted structure-activity relationship studies with new analogs for the 4-phenyl piperidines (4PP) and phenylcyclobutane carboxamides (PCB). Strains with mutations in MmpL3 demonstrated resistance to both compound series. We isolated resistant mutants for the two series and found mutations in MmpL3. These data suggest that MmpL3 is the target, or mechanism of resistance for both series.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , High-Throughput Screening Assays , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism
2.
ACS Chem Biol ; 17(6): 1315-1320, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35580266

ABSTRACT

Interleukin-1 receptor-associated kinase 3 (IRAK3) is a pseudokinase mediator in the human inflammatory pathway, and ablation of its function is associated with enhanced antitumor immunity. Traditionally, pseudokinases have eluded "druggability" and have not been considered tractable targets in the pharmaceutical industry. Herein we disclose a CRISPR/Cas9-mediated knockout of IRAK3 in monocyte-derived dendritic cells that results in an increase in IL-12 production upon lipopolysaccharide (LPS) stimulation. Furthermore, we disclose and characterize Degradomer D-1, which displays selective proteasomal degradation of IRAK3 and reproduces the 1L-12p40 increases observed in the CRISPR/Cas9 knockout.


Subject(s)
Cytokines , Interleukin-1 Receptor-Associated Kinases , Cytokines/metabolism , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-12/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Monocytes/metabolism
3.
Bioorg Med Chem ; 28(1): 115208, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31740203

ABSTRACT

Hepatitis C virus (HCV) nucleoside inhibitors have been a key focus of nearly 2 decades of HCV drug research due to a high barrier to drug resistance and pan-genotypic activity profile provided by molecules in this drug class. Our investigations focused on several potent 2'-halogenated uridine-based HCV polymerase inhibitors, resulting in the discovery of novel 2'-deoxy-2'-dihalo-uridine analogs that are potent inhibitors in replicon assays for all genotypes. Further studies to improve in vivo performance of these nucleoside inhibitors identified aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrugs 18a and 18c, which provide high levels of the active triphosphate in dog liver. AIBEE prodrug 18c was compared with sofosbuvir (1) by co-dosing both compounds by oral administration in dog (5 mg/kg each) and measuring liver concentrations of the active triphosphate metabolite at both 4 and 24 h post dosing. In this study, 18c provided liver triphosphate concentrations that were 6-fold higher than sofosbuvir (1) at both biopsy time points, suggesting that 18c could be a highly effective agent for treating HCV infected patients in the clinic.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Prodrugs/pharmacology , Uridine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship , Uridine/analogs & derivatives , Uridine/chemistry , Virus Replication/drug effects
4.
PLoS Negl Trop Dis ; 13(2): e0007159, 2019 02.
Article in English | MEDLINE | ID: mdl-30818326

ABSTRACT

There is a significant need for improved treatments for onchocerciasis and lymphatic filariasis, diseases caused by filarial worm infection. In particular, an agent able to selectively kill adult worms (macrofilaricide) would be expected to substantially augment the benefits of mass drug administration (MDA) with current microfilaricides, and to provide a solution to treatment of onchocerciasis / loiasis co-infection, where MDA is restricted. We have identified a novel macrofilaricidal agent, Tylosin A (TylA), which acts by targeting the worm-symbiont Wolbachia bacterium. Chemical modification of TylA leads to improvements in anti-Wolbachia activity and oral pharmacokinetic properties; an optimized analog (ABBV-4083) has been selected for clinical evaluation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Filaricides/pharmacology , Tylosin/analogs & derivatives , Tylosin/pharmacology , Wolbachia/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Elephantiasis, Filarial/drug therapy , Female , Filaricides/pharmacokinetics , Filarioidea/drug effects , Filarioidea/microbiology , Gerbillinae , Mice , Mice, Inbred BALB C , Onchocerciasis/drug therapy , Symbiosis/drug effects
5.
J Org Chem ; 84(8): 4723-4734, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30412402

ABSTRACT

ABBV-168 is a dihalogenated nucleotide under investigation for the treatment of hepatitis C virus. Three synthetic routes aimed at achieving the stereoselective installation of the C2' gem-Br,F substitution and subsequent Vorbruggen glycosylation were explored to prepare the penultimate nucleoside intermediate. Development culminated in a route to ABBV-168 featuring a de novo chromatography-free furanose synthesis, protecting group-directed Vorbruggen glycosylation, and highly selective phosphoramidation to furnish the API.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Nucleotides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Molecular Conformation , Nucleotides/chemical synthesis , Nucleotides/chemistry
6.
J Med Chem ; 61(24): 11074-11100, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30384606

ABSTRACT

A HTS campaign identified compound 1, an excellent hit-like molecule to initiate medicinal chemistry efforts to optimize a dual ROCK1 and ROCK2 inhibitor. Substitution (2-Cl, 2-NH2, 2-F, 3-F) of the pyridine hinge binding motif or replacement with pyrimidine afforded compounds with a clean CYP inhibition profile. Cocrystal structures of an early lead compound were obtained in PKA, ROCK1, and ROCK2. This provided critical structural information for medicinal chemistry to drive compound design. The structural data indicated the preferred configuration at the central benzylic carbon would be ( R), and application of this information to compound design resulted in compound 16. This compound was shown to be a potent and selective dual ROCK inhibitor in both enzyme and cell assays and efficacious in the retinal nerve fiber layer model after oral dosing. This tool compound has been made available through the AbbVie Compound Toolbox. Finally, the cocrystal structures also identified that aspartic acid residues 176 and 218 in ROCK2, which are glutamic acids in PKA, could be targeted as residues to drive both potency and kinome selectivity. Introduction of a piperidin-3-ylmethanamine group to the compound series resulted in compound 58, a potent and selective dual ROCK inhibitor with excellent predicted drug-like properties.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Crystallography, X-Ray , Cytochrome P-450 CYP2C9 Inhibitors/chemistry , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Design , Drug Evaluation, Preclinical/methods , Half-Life , Humans , Mice, Inbred C57BL , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/pathology , Rats, Sprague-Dawley , Structure-Activity Relationship , rho-Associated Kinases/chemistry
7.
Synapse ; 66(3): 187-95, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21953601

ABSTRACT

TRPV1 (transient receptor potential vanilloid family type 1) is a nonselective cation channel that is activated and/or sensitized by noxious heat, protons, and other endogenous molecules released following tissue injury. In addition, a role for TRPV1 in mechanotransmission is emerging. We have recently reported that a selective TRPV1 receptor antagonist, A-889425, reduces mechanical allodynia and spinal neuron responses to mechanical stimulation of complete Freund's adjuvant (CFA)-inflamed rat hind paws. The population of peripheral nerve fibers through which TRPV1 antagonists mediate their effect on mechanotransmission have not yet been described. The objective of this study was to characterize TRPV1-mediated modulation of mechanically evoked activity in sensory axons innervating rat hind paws. We used an in vitro skin-nerve preparation to record neural activity from single axons isolated from rat tibial nerve. Single fibers were classified by conduction velocity, mechanical threshold, and stimulus-response relationships. We used A-889425 to investigate uninjured and inflamed skin afferent neuron populations to evoked mechanical stimulation. Application of A-889425 had no effect on the mechanical responsiveness of Aδ and C-fiber units innervating uninjured skin. In contrast, A-889425 inhibited responses of slowly conducting Aδ fiber units to noxious mechanical stimulation in a population of axons innervating CFA-inflamed hind paws. These data support a role for TRPV1 in mechanotransmission following peripheral inflammation, and highlight the importance of a distinct subclass of primary afferent neurons in mediating this effect.


Subject(s)
Mechanotransduction, Cellular/physiology , Neurogenic Inflammation/physiopathology , Neurons, Afferent/physiology , Pyridines/pharmacology , TRPV Cation Channels/metabolism , Animals , Evoked Potentials/drug effects , Evoked Potentials/physiology , Male , Mechanotransduction, Cellular/drug effects , Neural Conduction/drug effects , Neural Conduction/physiology , Nociception/drug effects , Nociception/physiology , Rats , Rats, Sprague-Dawley , Skin/injuries , Skin/innervation , TRPV Cation Channels/antagonists & inhibitors , Tibial Nerve/physiology
8.
Bioorg Med Chem Lett ; 20(11): 3291-4, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20457518

ABSTRACT

The synthesis and SAR of a series of indazole TRPV1 antagonists leading to the discovery of 21 (ABT-116) is described. Biological studies demonstrated potent in vitro and in vivo activity for 21, as well as suitable physicochemical and pharmacokinetic properties for advancement to clinical development for pain management.


Subject(s)
Analgesics/pharmacology , Indazoles/pharmacology , Phenylurea Compounds/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Analgesics/pharmacokinetics , Animals , Humans , Indazoles/pharmacokinetics , Phenylurea Compounds/pharmacokinetics , Rats , Structure-Activity Relationship
9.
J Med Chem ; 52(9): 2880-98, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19348494

ABSTRACT

Inhibition of FBPase is considered a promising way to reduce hepatic gluconeogenesis and therefore could be a potential approach to treat type 2 diabetes. Herein we report the discovery of a series of purine phosphonic acids as AMP mimics targeting the AMP site of FBPase, which was achieved using a structure-guided drug design approach. These non-nucleotide purine analogues inhibit FBPase in a similar manner and with similar potency as AMP. More importantly, several purine analogues exhibited potent cellular and in vivo glucose-lowering activities, thus achieving proof-of-concept for inhibiting FBPase as a drug discovery target. For example, compounds 4.11 and 4.13 are as equipotent as AMP with regard to FBPase inhibition. Furthermore, compound 4.11 inhibited glucose production in primary rat hepatocytes and significantly lowered blood glucose levels in fasted rats.


Subject(s)
Adenosine Monophosphate/metabolism , Biomimetics , Fructose-Bisphosphatase/antagonists & inhibitors , Organophosphonates/chemistry , Organophosphonates/pharmacology , Purines/chemistry , Administration, Oral , Animals , Biological Availability , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/metabolism , Glucose/metabolism , Humans , Inhibitory Concentration 50 , Liver/enzymology , Organophosphonates/pharmacokinetics , Organophosphonates/therapeutic use , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Substrate Specificity
10.
Brain Res ; 1268: 58-67, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19236852

ABSTRACT

In order to enhance understanding of TRPV1 contributions to thermoregulation, we measured the effects of a TRPV1 receptor antagonist, A-889425, on thermoregulatory neurons in the medial preoptic area of the hypothalamus (mPOA) of rats while simultaneously monitoring rectal temperature (T(r)). Administration of A-889425 (4 micromol/kg, i.v.) significantly increased T(r) by 0.42+/-0.02 degrees C in anesthetized rats. Warm-sensitive (WS) neurons in the mPOA increase firing in response to body warming, and when active stimulate heat loss and inhibit heat production. WS neurons were initially inhibited by A-889425. Subsequently, WS neuronal activity diverged, differentiating WS neurons into two subgroups. One group of WS neurons continued to be inhibited during the recording period while another group of "biphasic" WS neurons increased firing as T(r) increased. Cold-sensitive (CS) neurons fire at a higher rate during cooling of the body, and when active, may contribute to heat production. Injection of A-889425 affected CS neurons in a manner opposite to the biphasic WS neurons; activity was initially increased followed by a later decrease. Direct administration of A-889425 into the mPOA (10 and 30 nmol) or spinal cord (30 nmol) did not affect T(r). Disruption of abdominal TRPV1 receptor function by injection of the TRPV1 receptor agonist, resiniferatoxin (20 microg/kg, i.p.), 9-15 days prior to experiments, blocked the effects of systemically injected A-889425 on T(r) and mPOA neuronal activity. These data demonstrate that antagonist block of abdominal TRPV1 receptors indirectly modulates activity of thermoregulatory neurons in the mPOA in a manner that is consistent with producing an acute rise in body temperature.


Subject(s)
Body Temperature Regulation/physiology , Neurons/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Pyridines/pharmacology , TRPV Cation Channels/metabolism , Abdomen/physiology , Action Potentials/drug effects , Animals , Body Temperature/drug effects , Body Temperature Regulation/drug effects , Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Diterpenes/pharmacology , Male , Neurons/drug effects , Preoptic Area/drug effects , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , Temperature
11.
J Neurophysiol ; 100(6): 3158-66, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18829846

ABSTRACT

TRPV1 receptors are activated and/or modulated by noxious heat, capsaicin, protons and other endogenous agents released following tissue injury. There is a growing appreciation that this molecular integrator may also have a role in mechanosensation. To further understand this role, we investigated the systemic and site-specific effects of a selective TRPV1 receptor antagonist, A-889425, on low-intensity mechanical stimulation in inflamed rats. Systemic administration of A-889425 (30 and 100 micromol/kg po) reduced mechanical allodynia in complete Freund's adjuvant (CFA)-inflamed rats. Systemic A-889425 (3 and 10 micromol/kg iv) also decreased the responses of spinal wide dynamic range (WDR) neurons to low-intensity mechanical stimulation in CFA-inflamed but not uninjured rats. This effect of A-889425 was likely mediated via multiple sites since local injection of A-889425 into the spinal cord (1-3 nmol), ipsilateral hindpaw (200 nmol), and cerebral ventricles (30-300 nmol) all attenuated WDR responses to low-intensity mechanical stimulation. In addition to an effect on mechanotransmission, systemic administration of A-889425 reduced the spontaneous firing of WDR neurons in inflamed but not uninjured rats. Spontaneous firing is elevated after injury and may reflect ongoing pain in the animal. Local injection experiments indicated that this effect of A-889425 on spontaneous firing was mainly mediated via TRPV1 receptors in the spinal cord. Thus the current data demonstrate that TRPV1 receptors have an enhanced role after an inflammatory injury, impacting both low-intensity mechanotransmission and possibly spontaneous pain. Furthermore this study delineates the differential contribution of central and peripheral TRPV1 receptors to affect spontaneous or mechanically evoked firing of WDR neurons.


Subject(s)
Action Potentials/physiology , Inflammation/pathology , Neurons/physiology , Spinal Cord/pathology , TRPV Cation Channels/physiology , Action Potentials/drug effects , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Evoked Potentials, Somatosensory/drug effects , Freund's Adjuvant/pharmacology , Inflammation/chemically induced , Male , Neurons/drug effects , Pain Threshold/drug effects , Physical Stimulation/methods , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , TRPV Cation Channels/antagonists & inhibitors
12.
Bioorg Med Chem ; 16(18): 8516-25, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18722778

ABSTRACT

A series of 1,2,3,6-tetrahydropyridyl-4-carboxamides, exemplified by 6, have been synthesized and evaluated for in vitro TRPV1 antagonist activity, and in vivo analgesic activity in animal pain models. The tetrahydropyridine 6 is a novel TRPV1 receptor antagonist that potently inhibits receptor-mediated Ca2+ influx in vitro induced by several agonists, including capsaicin, N-arachidonoyldopamine (NADA), and low pH. This compound penetrates the CNS and shows potent anti-nociceptive effects in a broad range of animal pain models upon oral dosing due in part to its ability to antagonize both central and peripheral TRPV1 receptors. The SAR leading to the discovery of 6 is presented in this report.


Subject(s)
Analgesics/pharmacology , Pyridines/administration & dosage , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Analgesics/chemical synthesis , Animals , Arachidonic Acids/pharmacology , Calcium/metabolism , Capsaicin/pharmacology , Disease Models, Animal , Dopamine/analogs & derivatives , Dopamine/pharmacology , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/pathology , Pain Measurement , Pyridines/chemical synthesis , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism
13.
J Med Chem ; 50(15): 3651-60, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17583335

ABSTRACT

The synthesis and structure-activity relationship of 1-(aryl)-3-(4-(amino)benzyl)urea transient receptor potential vanilloid 1 (TRPV1) antagonists are described. A variety of cyclic amine substituents are well tolerated at the 4-position of the benzyl group on compounds containing either an isoquinoline or indazole heterocyclic core. These compounds are potent antagonists of capsaicin activation of the TRPV1 receptor in vitro. Analogues, such as compound 45, have been identified that have good in vivo activity in animal models of pain. Further optimization of 45 resulted in compound 58 with substantially improved microsome stability and oral bioavailability, as well as in vivo activity.


Subject(s)
Analgesics/chemical synthesis , Indazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Administration, Oral , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Dogs , Drug Stability , Humans , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Microsomes, Liver/metabolism , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Rats , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics , Urea/pharmacology
14.
Bioorg Med Chem Lett ; 17(12): 3412-6, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17459701

ABSTRACT

A series of substituted bis[(para-methoxy)benzyl] (bisPMB) esters of 1-naphthalenemethylphosphonate (NMPA) were synthesized and evaluated as phosphonate prodrugs. BisPMB NMPA esters (4b and 4c) with significantly improved aqueous stability were identified that also resulted in increased intracellular levels of NMPA following prodrug incubation with primary rat hepatocytes.


Subject(s)
Hepatocytes/drug effects , Organophosphonates/chemistry , Organophosphorus Compounds/pharmacokinetics , Prodrugs/metabolism , Animals , Drug Stability , Hepatocytes/cytology , Hepatocytes/pathology , Models, Chemical , Organophosphorus Compounds/chemical synthesis , Prodrugs/chemical synthesis , Rats , Time Factors
15.
Bioorg Med Chem ; 14(14): 4740-9, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16621571

ABSTRACT

Novel 5,6-fused heteroaromatic ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that 4-aminoindoles and indazoles are the preferential cores for the attachment of ureas. Bulky electron-withdrawing groups in the para-position of the aromatic ring of the urea substituents imparted the best in vitro potency at TRPV1. The most potent derivatives were assessed in in vivo inflammatory and neuropathic pain models. Compound 46, containing the indazole core and a 3,4-dichlorophenyl group appended to it via a urea linker, demonstrated in vivo analgesic activity upon oral administration. This derivative also showed selectivity versus other receptors in the CEREP screen and exhibited acceptable cardiovascular safety at levels exceeding the therapeutic dose.


Subject(s)
TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Animals , In Vitro Techniques , Kinetics , Male , Mice , Motor Activity/drug effects , Pain Measurement , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/metabolism , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
16.
Chemistry ; 9(18): 4442-51, 2003 Sep 22.
Article in English | MEDLINE | ID: mdl-14502631

ABSTRACT

Racemic butadiene and isoprene monoepoxide react with unsaturated alcohols in the presence of a chiral palladium catalyst and a boron co-catalyst to give 3-alkoxy-4-hydroxy-1-butene and 3-alkoxy-4-hydroxy-3-methyl-1-butene, respectively, with excellent regio- and enantioselectivity in a dynamic kinetic asymmetric transformation whereby both enantiomers of the starting epoxides provide the same enantiomeric product. In the case of 2-phenylbutadiene monoepoxide, easily available from phenacyl chloride and vinylmagnesium bromide, the reaction proceeds by kinetic resolution. A model to rationalize the result is presented. The bis-olefin products are ideal substrates for the Ru catalyzed ring closing metathesis. In this way, five-, six-, and seven-membered oxygen heterocycles are readily available enantiomerically pure. The value of this very simple two step process is demonstrated by the use of the five-membered ring heterocycles to form unnatural and unusual nucleosides that cannot be easily accessed by other means. The sequence involves a Ru catalyzed isomerization of the initial 2,5-dihydrofuran to a 2,3-dihydrofuran followed by a selenium promoted addition of a pyrimidine or purine base. One advantage of this strategy is the easy access to either enantiomeric series, both of which have important biological applications.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Nucleosides/chemical synthesis , Oxygen/chemistry , Palladium/chemistry , Alcohols/chemical synthesis , Alcohols/chemistry , Catalysis , Cyclization , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Heterocyclic Compounds/chemistry , Kinetics , Models, Chemical , Molecular Structure , Nucleosides/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL