Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
FASEB J ; 38(5): e23535, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38466300

ABSTRACT

Caveolae are small flask-shaped invaginations of the surface membrane which are proposed to recruit and co-localize signaling molecules. The distinctive caveolar shape is achieved by the oligomeric structural protein caveolin, of which three isoforms exist. Aside from the finding that caveolin-3 is specifically expressed in muscle, functional differences between the caveolin isoforms have not been rigorously investigated. Caveolin-3 is relatively cysteine-rich compared to caveolins 1 and 2, so we investigated its cysteine post-translational modifications. We find that caveolin-3 is palmitoylated at 6 cysteines and becomes glutathiolated following redox stress. We map the caveolin-3 palmitoylation sites to a cluster of cysteines in its C terminal membrane domain, and the glutathiolation site to an N terminal cysteine close to the region of caveolin-3 proposed to engage in protein interactions. Glutathiolation abolishes caveolin-3 interaction with heterotrimeric G protein alpha subunits. Our results indicate that a caveolin-3 oligomer contains up to 66 palmitates, compared to up to 33 for caveolin-1. The additional palmitoylation sites in caveolin-3 therefore provide a mechanistic basis by which caveolae in smooth and striated muscle can possess unique phospholipid and protein cargoes. These unique adaptations of the muscle-specific caveolin isoform have important implications for caveolar assembly and signaling.


Subject(s)
Caveolin 3 , Cysteine , Muscle, Skeletal , Protein Processing, Post-Translational , Protein Isoforms
2.
PLoS One ; 19(3): e0299665, 2024.
Article in English | MEDLINE | ID: mdl-38512906

ABSTRACT

Reversible S-palmitoylation of protein cysteines, catalysed by a family of integral membrane zDHHC-motif containing palmitoyl acyl transferases (zDHHC-PATs), controls the localisation, activity, and interactions of numerous integral and peripheral membrane proteins. There are compelling reasons to want to inhibit the activity of individual zDHHC-PATs in both the laboratory and the clinic, but the specificity of existing tools is poor. Given the extensive conservation of the zDHHC-PAT active site, development of isoform-specific competitive inhibitors is highly challenging. We therefore hypothesised that proteolysis-targeting chimaeras (PROTACs) may offer greater specificity to target this class of enzymes. In proof-of-principle experiments we engineered cell lines expressing tetracycline-inducible Halo-tagged zDHHC5 or zDHHC20, and evaluated the impact of Halo-PROTACs on zDHHC-PAT expression and substrate palmitoylation. In HEK-derived FT-293 cells, Halo-zDHHC5 degradation significantly decreased palmitoylation of its substrate phospholemman, and Halo-zDHHC20 degradation significantly diminished palmitoylation of its substrate IFITM3, but not of the SARS-CoV-2 spike protein. In contrast, in a second kidney derived cell line, Vero E6, Halo-zDHHC20 degradation did not alter palmitoylation of either IFITM3 or SARS-CoV-2 spike. We conclude from these experiments that PROTAC-mediated targeting of zDHHC-PATs to decrease substrate palmitoylation is feasible. However, given the well-established degeneracy in the zDHHC-PAT family, in some settings the activity of non-targeted zDHHC-PATs may substitute and preserve substrate palmitoylation.


Subject(s)
Acyltransferases , Lipoylation , Humans , Acyltransferases/genetics , Acyltransferases/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Cell Line , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
3.
EMBO Rep ; 25(3): 1075-1105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38396206

ABSTRACT

Leishmania parasites undergo differentiation between various proliferating and non-dividing forms to adapt to changing host environments. The mechanisms that link environmental cues with the parasite's developmental changes remain elusive. Here, we report that Leishmania TORC1 is a key environmental sensor for parasite proliferation and differentiation in the sand fly-stage promastigotes and for replication of mammalian-stage amastigotes. We show that Leishmania RPTOR1, interacts with TOR1 and LST8, and identify new parasite-specific proteins that interact in this complex. We investigate TORC1 function by conditional deletion of RPTOR1, where under nutrient-rich conditions RPTOR1 depletion results in decreased protein synthesis and growth, G1 cell cycle arrest and premature differentiation from proliferative promastigotes to non-dividing mammalian-infective metacyclic forms. These parasites are unable to respond to nutrients to differentiate into proliferative retroleptomonads, which are required for their blood-meal induced amplification in sand flies and enhanced mammalian infectivity. We additionally show that RPTOR1-/- metacyclic promastigotes develop into amastigotes but do not proliferate in the mammalian host to cause pathology. RPTOR1-dependent TORC1 functionality represents a critical mechanism for driving parasite growth and proliferation.


Subject(s)
Leishmania , Phlebotomus , Psychodidae , Animals , Psychodidae/parasitology , Phlebotomus/parasitology , Nutrients , Cell Proliferation , Mammals
4.
Cell Rep ; 43(2): 113679, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38236777

ABSTRACT

Phospholemman (PLM) regulates the cardiac sodium pump: PLM phosphorylation activates the pump whereas PLM palmitoylation inhibits its activity. Here, we show that the anti-oxidant protein peroxiredoxin 6 (Prdx6) interacts with and depalmitoylates PLM in a glutathione-dependent manner. Glutathione loading cells acutely reduce PLM palmitoylation; glutathione depletion significantly increases PLM palmitoylation. Prdx6 silencing abolishes these effects, suggesting that PLM can be depalmitoylated by reduced Prdx6. In vitro, only recombinant Prdx6, among several peroxiredoxin isoforms tested, removes palmitic acid from recombinant palmitoylated PLM. The broad-spectrum depalmitoylase inhibitor palmostatin B prevents Prdx6-dependent PLM depalmitoylation in cells and in vitro. Our data suggest that Prdx6 is a thioesterase that can depalmitoylate proteins by nucleophilic attack via its reactive thiol, linking PLM palmitoylation and hence sodium pump activity to cellular glutathione status. We show that protein depalmitoylation can occur via a catalytic cysteine in which substrate specificity is determined by a protein-protein interaction.


Subject(s)
Peroxiredoxin VI , Phosphoproteins , Sodium-Potassium-Exchanging ATPase , Membrane Proteins , Glutathione
5.
Intern Emerg Med ; 18(5): 1359-1371, 2023 08.
Article in English | MEDLINE | ID: mdl-37249753

ABSTRACT

Electronic cigarette (EC) aerosol emissions generally contain fewer and lower concentrations of harmful and potentially harmful constituents, compared with cigarette smoke. Further studies are needed to establish whether decreased emissions translate to reduced health risks for EC users. In a cross-sectional study, biomarkers of exposure (BoE) to certain tobacco smoke toxicants and biomarkers of potential harm (BoPH), associated with biological processes linked to the potential development of smoking-related diseases and oxidative stress, were assessed in solus Vuse ECs users and current, former, and never smokers. In total, 213 participants were enrolled, and smoking status was confirmed by urinary cotinine, exhaled carbon monoxide, and N-(2-cyanoethyl)valine levels (EC users and former smokers only). During confinement participants used their usual product (EC or cigarette) as normal and BoE and BoPHs were assessed via blood, 24-h urine, and physiological assessment. Significantly lower levels of all urinary BoE; MHBMA, HMPMA, 3-HPMA, NNN, 3-OH-B[a]P, S-PMA, NNAL (all p < 0.0001), and TNeq (p = 0.0074) were observed in EC users when compared with smokers. Moreover, significantly lower levels were observed in EC users for 3 of the 7 BoPH measured, carboxyhaemoglobin (p < 0.0001), soluble intercellular adhesion molecule-1 (p = 0.0028), and 11-dehydrothromboxane B2 (p = 0.0012), when compared with smokers. As compared with smokers, solus Vuse EC users have significantly lower exposure to tobacco toxicants for the BoE, and 3 BoPH measured. These results add to the weight of evidence supporting EC as part of a tobacco harm reduction strategy.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Humans , Smokers , Cross-Sectional Studies , Biomarkers
6.
Front Physiol ; 14: 1163339, 2023.
Article in English | MEDLINE | ID: mdl-37123274

ABSTRACT

The sinoatrial node (SAN) and subsidiary pacemakers in the cardiac conduction system generate spontaneous electrical activity which is indispensable for electrical and therefore contractile function of the heart. The hyperpolarisation-activated cyclic nucleotide-gated channel HCN4 is responsible for genesis of the pacemaker "funny" current during diastolic depolarisation. S-palmitoylation, the reversible conjugation of the fatty acid palmitate to protein cysteine sulfhydryls, regulates the activity of key cardiac Na+ and Ca2+ handling proteins, influencing their membrane microdomain localisation and function. We investigated HCN4 palmitoylation and its functional consequences in engineered human embryonic kidney 293T cells as well as endogenous HCN4 in neonatal rat ventricular myocytes. HCN4 was palmitoylated in all experimental systems investigated. We mapped the HCN4 palmitoylation sites to a pair of cysteines in the HCN4 intracellular amino terminus. A double cysteine-to-alanine mutation CC93A/179AA of full length HCN4 caused a ∼67% reduction in palmitoylation in comparison to wild type HCN4. We used whole-cell patch clamp to evaluate HCN4 current (IHCN4) in stably transfected 293T cells. Removal of the two N-terminal palmitoylation sites did not significantly alter half maximal activation voltage of IHCN4 or the activation slope factor. IHCN4 was significantly larger in cells expressing wild type compared to non-palmitoylated HCN4 across a range of voltages. Phylogenetic analysis revealed that although cysteine 93 is widely conserved across all classes of HCN4 vertebrate orthologs, conservation of cysteine 179 is restricted to placental mammals. Collectively, we provide evidence for functional regulation of HCN4 via palmitoylation of its amino terminus in vertebrates. We suggest that by recruiting the amino terminus to the bilayer, palmitoylation enhances the magnitude of HCN4-mediated currents, but does not significantly affect the kinetics.

7.
Cell Calcium ; 106: 102639, 2022 09.
Article in English | MEDLINE | ID: mdl-36027648

ABSTRACT

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Subject(s)
Lipoylation , TRPM Cation Channels , Calcium/metabolism , Cations/metabolism , Phosphorylation , Signal Transduction , TRPM Cation Channels/metabolism
8.
Cancer Res ; 82(6): 1140-1152, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35078817

ABSTRACT

AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE: This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/metabolism , Carboplatin , Humans , Indoles , Irinotecan , Morpholines/pharmacology , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Sulfoxides/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
9.
J Trauma Dissociation ; 22(2): 202-219, 2021.
Article in English | MEDLINE | ID: mdl-33470907

ABSTRACT

Women Veterans face gender-specific challenges to military life and post-deployment readjustment, including gender-based discrimination and military sexual trauma. Despite recent military initiatives to address these issues, women still experience unique challenges during military service. This study examines spontaneous comments about gender-specific challenges to military life that were made by participants in a qualitative study of women's transitions to civilian life after deployment to Iraq or Afghanistan. METHODS: Women Veterans who were enrolled at a New England VA hospital and who had deployed to the U.S. conflicts in Iraq and Afghanistan participated in this qualitative study (N = 22). Interview queries and initial coding structure were developed through an extensive literature review. An iterative coding process generated additional themes identified in the data. For this project, codes regarding self-initiated reports of gender-specific challenges that fell outside the scope of the study's initial interview agenda were reviewed for thematic analysis. RESULTS: The following three self-initiated themes emerged among 12 respondents: 1) gender-based scrutiny and discrimination; 2) the military's inadequate position and response to military sexual trauma; and 3) disadvantages to women service members living in a male-dominated environment. Across all three themes emerged a sub-theme in which women perceived their unique needs to be inconvenient and/or disregarded. Respondents described how these challenges disrupted their lives during and after military service. CONCLUSION: Results imply gender-specific challenges and military sexual trauma remain critical concerns for women Veterans well after deployment had ended, and that improved policy may have long-term health implications.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Female , Humans , Male , Qualitative Research
10.
Commun Biol ; 3(1): 411, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737405

ABSTRACT

Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.


Subject(s)
Acetyltransferases/genetics , Acyltransferases/genetics , Lipoylation/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Animals , Cell Membrane/genetics , Cell-Penetrating Peptides/genetics , Humans , Mice , Phosphorylation/genetics , Protein Processing, Post-Translational/genetics , Rats , Sodium-Potassium-Exchanging ATPase/genetics , Substrate Specificity/genetics
11.
Nat Microbiol ; 5(10): 1207-1216, 2020 10.
Article in English | MEDLINE | ID: mdl-32661312

ABSTRACT

The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.


Subject(s)
Kinetochores/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Trypanosoma brucei brucei/drug effects , Animals , Biomarkers , Cell Cycle/drug effects , Cell Line , Disease Models, Animal , Gene Expression , Humans , Immunophenotyping , Kinetochores/chemistry , Mice , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protozoan Proteins/chemistry , Structure-Activity Relationship
12.
PLoS Pathog ; 16(6): e1008455, 2020 06.
Article in English | MEDLINE | ID: mdl-32544189

ABSTRACT

The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.


Subject(s)
Cell Cycle , Deubiquitinating Enzymes/metabolism , Leishmania mexicana/enzymology , Protozoan Proteins/metabolism , Ubiquitination , Animals , Deubiquitinating Enzymes/genetics , Female , Gene Deletion , Leishmania mexicana/genetics , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics
13.
Biochimie ; 166: 150-160, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31472179

ABSTRACT

Leishmania mexicana is one of the causative agents of cutaneous leishmaniasis in humans. There is an urgent need to identify new drug targets to combat the disease. Cysteine peptidases play crucial role in pathogenicity and virulence in Leishmania spp. and are promising targets for developing new anti-leishmanial drugs. Genetic drug target validation has been performed on a number of cysteine peptidases, but others have yet to be characterized. We targeted 16 L. mexicana cysteine peptidases for gene deletion and tagging using CRISPR-Cas9 in order to identify essential genes and ascertain their cellular localization. Our analysis indicates that two clan CA, family C2 calpains (LmCAL27.1, LmCAL31.6) and clan CD, family C11 PNT1 are essential for survival in the promastigote stage. The other peptidases analysed, namely calpains LmCAL4.1, LmCAL25.1, and members of clan CA C51, C78, C85 and clan CP C97 were found to be non-essential. We generated a gene deletion mutant (Δpnt1) which was severely compromised in its cell growth and a conditional gene deletion mutant of PNT1 (Δpnt1: PNT1flox/Δ pnt1:HYG [SSU DiCRE]). PNT1 localizes to distinct foci on the flagellum and on the surface of the parasite. The conditional gene deletion of PNT1 induced blebs and pits on the cell surface and eventual cell death. Over-expression of PNT1, but not an active site mutant PNT1C134A, was lethal, suggesting that active PNT1 peptidase is required for parasite survival. Overall, our data suggests that PNT1 is an essential gene and one of a number of cysteine peptidases that are potential drug targets in Leishmania.


Subject(s)
Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/physiology , Leishmania mexicana/enzymology , Leishmaniasis, Cutaneous/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/physiology , Gene Deletion , Genes, Essential , Humans , Leishmania mexicana/genetics , Leishmania mexicana/pathogenicity , Virulence/genetics
14.
EBioMedicine ; 36: 83-91, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30268832

ABSTRACT

BACKGROUND: Miltefosine has been used successfully to treat visceral leishmaniasis (VL) in India, but it was unsuccessful for VL in a clinical trial in Brazil. METHODS: To identify molecular markers that predict VL treatment failure whole genome sequencing of 26 L. infantum isolates, from cured and relapsed patients allowed a GWAS analysis of SNPs, gene and chromosome copy number variations. FINDINGS: A strong association was identified (p = 0·0005) between the presence of a genetically stable L. infantumMiltefosine Sensitivity Locus (MSL), and a positive response to miltefosine treatment. The risk of treatment failure increased 9·4-fold (95% CI 2·11-53·54) when an isolate did not have the MSL. The complete absence of the MSL predicted miltefosine failure with 0·92 (95% CI 0·65-0·996) sensitivity and 0·78 (95% CI 0·52-0·92) specificity. A genotyping survey of L. infantum (n = 157) showed that the frequency of MSL varies in a cline from 95% in North East Brazil to <5% in the South East. The MSL was found in the genomes of all L. infantum and L. donovani sequenced isolates from the Old World (n = 671), where miltefosine can have a cure rate higher than 93%. INTERPRETATION: Knowledge on the presence or absence of the MSL in L. infantum will allow stratification of patients prior to treatment, helping to establish better therapeutic strategies for VL treatment. FUND: CNPq, FAPES, GCRF MRC and Wellcome Trust.


Subject(s)
Antiprotozoal Agents/therapeutic use , Genetic Markers , Leishmania infantum/drug effects , Leishmania infantum/genetics , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Phosphorylcholine/analogs & derivatives , Antiprotozoal Agents/pharmacology , Brazil , Computational Biology/methods , DNA Copy Number Variations , Genome, Protozoan , Genomics/methods , Geography , Humans , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Quantitative Trait Loci , Treatment Failure , Treatment Outcome
15.
JMIR Mhealth Uhealth ; 5(10): e156, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29074470

ABSTRACT

BACKGROUND: Posttraumatic stress disorder (PTSD) is a prevalent mental health issue among veterans. Access to PTSD treatment is influenced by geographic (ie, travel distance to facilities), temporal (ie, time delay between services), financial (ie, eligibility and cost of services), and cultural (ie, social stigma) barriers. OBJECTIVE: The emergence of mobile health (mHealth) apps has the potential to bridge many of these access gaps by providing remote resources and monitoring that can offer discrete assistance to trauma survivors with PTSD and enhance patient-clinician relationships. In this study, we investigate the current mHealth capabilities relevant to PTSD. METHODS: This study consists of two parts: (1) a review of publicly available PTSD apps designed to determine the availability of PTSD apps, which includes more detailed information about three dominant apps and (2) a scoping literature review performed using a systematic method to determine app usage and efforts toward validation of such mHealth apps. App usage relates to how the end users (eg, clinicians and patients) are interacting with the app, whereas validation is testing performed to ensure the app's purpose and specifications are met. RESULTS: The results suggest that though numerous apps have been developed to aid in the diagnosis and treatment of PTSD symptoms, few apps were designed to be integrated with clinical PTSD treatment, and minimal efforts have been made toward enhancing the usability and validation of PTSD apps. CONCLUSIONS: These findings expose the need for studies relating to the human factors evaluation of such tools, with the ultimate goal of increasing access to treatment and widening the app adoption rate for patients with PTSD.

16.
Gynecol Surg ; 14(1): 15, 2017.
Article in English | MEDLINE | ID: mdl-28890677

ABSTRACT

The multidisciplinary team (MDT) is considered good practice in the management of chronic conditions and is now a well-established part of clinical care in the NHS. There has been a recent drive to have MDTs in the management of women with severe endometriosis requiring complex surgery as a result of recommendations from the European Society for Human Reproduction and Embryology (ESHRE) and British Society for Gynaecological Endoscopy (BSGE). The multidisciplinary approach to the management of patients with endometriosis leads to better results in patient outcomes; however, there are potentially a number of barriers to its implementation and maintenance. This paper aims to review the potential benefits, disadvantages and barriers of the multidisciplinary team in the management of severe endometriosis.

17.
Nurse Educ ; 42(5S Suppl 1): S18-S21, 2017.
Article in English | MEDLINE | ID: mdl-28832457

ABSTRACT

Postclinical conferences are an essential component of clinical nursing education. Numerous constraints including the rapidly changing clinical teaching environment and the struggle to secure clinical placements are affecting the use and purpose of postclinical conferences. This article describes 1 faculty member's approach in designing and implementing a teaching strategy to integrate Quality and Safety Education for Nurses and concepts from a concept-based curriculum into a unique clinical seminar format.


Subject(s)
Congresses as Topic , Education, Nursing/methods , Education, Nursing/organization & administration , Patient Safety , Quality of Health Care , Curriculum , Faculty, Nursing , Humans , Nursing Education Research , Nursing Evaluation Research , Nursing Methodology Research , Teaching
18.
J Pharm Sci ; 106(1): 66-70, 2017 01.
Article in English | MEDLINE | ID: mdl-28029342

ABSTRACT

A green approach has been used for co-crystallization of noncongruent co-crystal pair of caffeine/maleic acid using water. Ultrasound is known to affect crystallization; hence, the effect of high power ultrasound on the ternary phase diagram has been investigated in detail using a slurry co-crystallization approach. A systematic investigation was performed to understand how the accelerated conditions during ultrasound-assisted co-crystallization will affect different regions of the ternary phase diagram. Application of ultrasound showed considerable effect on the ternary phase diagram, principally on caffeine/maleic acid 2:1 (disappeared) and 1:1 co-crystal (narrowed) regions. Also, the stability regions for pure caffeine and maleic acid in water were narrowed in the presence of ultrasound, expanding the solution region. The observed effect of ultrasound on the phase diagram was correlated with solubility of caffeine and maleic acid and stability of co-crystal forms in water.


Subject(s)
Caffeine/chemistry , Crystallization/methods , Maleates/chemistry , Sonication/methods , Caffeine/chemical synthesis , Green Chemistry Technology/methods , Maleates/chemical synthesis , Phase Transition , Solubility , Water/chemistry
19.
J Pharm Biomed Anal ; 129: 172-181, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27429366

ABSTRACT

The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals.


Subject(s)
Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Spectroscopy, Near-Infrared/methods , Calibration , Carbamazepine/chemistry , Ibuprofen/chemistry , Least-Squares Analysis , Multivariate Analysis , Niacinamide/chemistry , Powders/chemistry
20.
J Biol Chem ; 291(18): 9492-500, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26940875

ABSTRACT

The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His(99) and Cys(136)), and an Asp (Asp(134)) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.


Subject(s)
Alleles , Cysteine Proteases , Gene Expression Regulation, Enzymologic/physiology , Protozoan Proteins , Trypanosoma brucei brucei , Animals , Catalytic Domain , Cysteine Proteases/biosynthesis , Cysteine Proteases/chemistry , Cysteine Proteases/genetics , Mice , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...