Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 158(2): 297-310, 2021 07.
Article in English | MEDLINE | ID: mdl-33720433

ABSTRACT

CD33 is a Siglec (sialic acid-binding immunoglobulin-type lectin) receptor on microglia. Human CD33 can be alternatively spliced into two isoforms: the long isoform (CD33M) and a shorter isoform (CD33m) that lacks the sialic acid-binding site. CD33m appears to protect against Alzheimer's disease; however, it remains unclear how. To investigate potential mechanisms by which CD33m may confer protection, we expressed the CD33m and CD33M isoforms of human CD33 in mouse BV-2 and human CHME3 microglial cells and assessed microglia functions. In the BV-2 cells, CD33M inhibited microglial phagocytosis of beads, synapses, debris and dead cells, while CD33m increased phagocytosis of beads, debris and cells. RNAi knockdown of the endogenous mouse CD33 increased phagocytosis and prevented CD33m's (but not CD33M's) effect on phagocytosis. CD33M increased cell attachment but inhibited cell proliferation, while CD33m did the opposite. We also found that CD33M inhibited cell migration. In human CHME3 cells, CD33M increased cell attachment, but inhibited phagocytosis, proliferation and migration, whereas CD33m did the opposite. We conclude that CD33M inhibits microglial phagocytosis, inhibits migration and increases adhesion, while CD33m increases phagocytosis, proliferation and inhibits adhesion. Thus, CD33m might protect against Alzheimer's disease by increasing microglial proliferation, movement and phagocytosis of debris and dead cells.


Subject(s)
Alzheimer Disease/metabolism , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Microglia/drug effects , Phagocytosis/drug effects , Sialic Acid Binding Ig-like Lectin 3/genetics , Alzheimer Disease/genetics , Animals , Cell Line , Encephalitis/genetics , Gene Knockdown Techniques , Genetic Variation , Humans , Mice , Neuraminidase/chemistry , RNA Interference , Sialic Acid Binding Ig-like Lectin 3/metabolism
2.
J Neurochem ; 155(4): 403-416, 2020 11.
Article in English | MEDLINE | ID: mdl-32279315

ABSTRACT

Most cell surface receptors are sialylated, i.e. have sialic acid as the terminal residue of their sugar chains, but can be desialylated by sialidases, such as neuraminidase 1 (Neu1). Desialylation by Neu1 can activate immune cells, such as neutrophils, macrophages and monocytes. We investigated the role of Neu1 in activation of microglia using BV-2 cells (a murine microglial cell line) by cytokine ELISAs, enzyme activity assays, antibody/lectin binding and proximity labelling. We found that lipopolysaccharide (LPS) activation caused an increase in Neu1 protein on the cell surface, and an increase in surface sialidase activity that was prevented by Neu1 knockdown. Moreover, LPS induced interleukin 6 (IL-6) and MCP-1 release, which was reduced by Neu1 knockdown and increased by Neu1 over-expression. Neu1 knockdown also prevented the maintenance of IL-6 release by microglia after LPS was removed. Sialidase treatment of the cells was sufficient to induce IL-6 release, prevented by inhibiting toll-like receptor 4 (TLR4). Neu1 was found in close proximity to TLR4 on the surface of cells, and LPS induced desialylation of TLR4 on the cell surface, prevented by Neu1 knockdown. Sialic acid-binding immunoglobulin-like lectin E was found to bind to TLR4 via sialic acid residues and inhibit IL-6 release by BV-2 cells. We conclude that LPS causes Neu1 to translocate to the cell surface, where it desialylates TLR4, releasing inhibitory sialic acid-binding immunoglobulin-like lectin E, enhancing and maintaining inflammatory activation of the microglia. Thus, sialylation is a potent regulator of microglial activation, and Neu1 may be a target to reduce activation of microglia.


Subject(s)
Lipopolysaccharides/pharmacology , Microglia/metabolism , Neuraminidase/metabolism , Toll-Like Receptor 4/metabolism , Animals , Female , HEK293 Cells , Humans , Male , Mice , Microglia/drug effects , Rats , Rats, Wistar
3.
Cell Rep ; 29(3): 697-713.e8, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618637

ABSTRACT

Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid ß plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.


Subject(s)
DNA-Binding Proteins/metabolism , Microglia/metabolism , Proto-Oncogene Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/veterinary , Amyloid/metabolism , Animals , Brain/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Dioxygenases , Enhancer Elements, Genetic , Humans , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Transcription Factor RelA/metabolism , Transcription, Genetic/drug effects
4.
Front Cell Neurosci ; 12: 313, 2018.
Article in English | MEDLINE | ID: mdl-30297984

ABSTRACT

Microglia, the resident immune cells of the brain, have multiple functions in physiological and pathological conditions, including Alzheimer's disease (AD). The use of primary microglial cell cultures has proved to be a valuable tool to study microglial biology under various conditions. However, more advanced transfection methodologies for primary cultured microglia are still needed, as current methodologies provide low transfection efficiency and induce cell death and/or inflammatory activation of the microglia. Here, we describe an easy, and effective method based on the Glial-Mag method (OZ Biosciences) using magnetic nanoparticles and a magnet to successfully transfect primary microglia cells with different small interfering RNAs (siRNAs). This method does not require specialist facilities or specific training and does not induce cell toxicity or inflammatory activation. We demonstrate that this protocol successfully decreases the expression of two key genes associated with AD, the triggering receptor expressed in myeloid cells 2 (TREM2) and CD33, in primary microglia cell cultures.

5.
Sci Rep ; 7: 41689, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128358

ABSTRACT

Traumatic brain injury (TBI) is currently a major cause of morbidity and poor quality of life in Western society, with an estimate of 2.5 million people affected per year in Europe, indicating the need for advances in TBI treatment. Within the first 24 h after TBI, several inflammatory response factors become upregulated, including the lectin galectin-3. In this study, using a controlled cortical impact (CCI) model of head injury, we show a large increase in the expression of galectin-3 in microglia and also an increase in the released form of galectin-3 in the cerebrospinal fluid (CSF) 24 h after head injury. We report that galectin-3 can bind to TLR-4, and that administration of a neutralizing antibody against galectin-3 decreases the expression of IL-1ß, IL-6, TNFα and NOS2 and promotes neuroprotection in the cortical and hippocampal cell populations after head injury. Long-term analysis demonstrated a significant neuroprotection in the cortical region in the galectin-3 knockout animals in response to TBI. These results suggest that following head trauma, released galectin-3 may act as an alarmin, binding, among other proteins, to TLR-4 and promoting inflammation and neuronal loss. Taking all together, galectin-3 emerges as a clinically relevant target for TBI therapy.


Subject(s)
Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/metabolism , Brain/immunology , Brain/metabolism , Galectin 3/metabolism , Immunity , Animals , Biomarkers , Brain/pathology , Brain Injuries, Traumatic/pathology , Cell Count , Disease Models, Animal , Galectin 3/genetics , Gene Expression , Hippocampus/immunology , Hippocampus/metabolism , Hippocampus/pathology , Mice , Mice, Knockout , Microglia/metabolism , Neurons/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...