Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014161

ABSTRACT

Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.

2.
Nat Methods ; 21(4): 566-568, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38459386

ABSTRACT

In transmission electron microscopy (TEM), cameras are square or rectangular but beams are round so the circular lobes irradiate adjacent areas, precluding further neighboring acquisition for beam-sensitive samples. We present condenser aperture plates with square and rectangular shapes that improve the efficiency of area usage by 70% and enhance montage imaging for beam-sensitive specimens. We demonstrate the compatibility of these condenser aperture plates with high-resolution cryogenic TEM by reconstructing a 1.8-Å map of equine apo-ferritin.


Subject(s)
Microscopy, Electron, Transmission , Animals , Horses
5.
Biochemistry ; 62(9): 1484-1496, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37014173

ABSTRACT

The nematode Caenorhabditis elegans contains genes for two types of ferritin (ftn-1 and ftn-2) that express FTN-1 and FTN-2. We have expressed and purified both proteins and characterized them by X-ray crystallography, cryo-electron microscopy, transmission electron microscopy, dynamic light scattering, and kinetically by oxygen electrode and UV-vis spectroscopy. Both show ferroxidase activity, but although they have identical ferroxidase active sites, FTN-2 is shown to react approximately 10 times faster than FTN-1, with L-type ferritin character over longer time periods. We hypothesize that the large variation in rate may be due to differences in the three- and four-fold channels into the interior of the protein 24-mer. FTN-2 is shown to have a wider entrance into the three-fold channel than FTN-1. Additionally, the charge gradient through the channel of FTN-2 is more pronounced, with Asn and Gln residues in FTN-1 replaced by Asp and Glu residues in FTN-2. Both FTN-1 and FTN-2 have an Asn residue near the ferroxidase active site that is a Val in most other species, including human H ferritin. This Asn residue has been observed before in ferritin from the marine pennate diatom Pseudo-mitzchia multiseries. By replacing this Asn residue with a Val in FTN-2, we show that the reactivity decreases over long time scales. We therefore propose that Asn106 is involved in iron transport from the ferroxidase active site to the central cavity of the protein.


Subject(s)
Caenorhabditis elegans , Ferritins , Animals , Humans , Ferritins/chemistry , Caenorhabditis elegans/metabolism , Iron/chemistry , Ceruloplasmin/metabolism , Cryoelectron Microscopy
6.
Ultramicroscopy ; 250: 113732, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37087909

ABSTRACT

Nanobeam electron diffraction can probe local structural properties of complex crystalline materials including phase, orientation, tilt, strain, and polarization. Ideally, each diffraction pattern from a projected area of a few unit cells would produce a clear Bragg diffraction pattern, where the reciprocal lattice vectors can be measured from the spacing of the diffracted spots, and the spot intensities are equal to the square of the structure factor amplitudes. However, many samples are too thick for this simple interpretation of their diffraction patterns, as multiple scattering of the electron beam can produce a highly nonlinear relationship between the spot intensities and the underlying structure. Here, we develop a stacked Bloch wave method to model the diffracted intensities from thick samples with structure that varies along the electron beam. Our method reduces the large parameter space of electron scattering to just a few structural variables per probe position, making it fast enough to apply to very large fields of view. We apply our method to SrTiO3/PbTiO3/SrTiO3 multilayer samples, and successfully disentangle specimen tilt from the mean polarization of the PbTiO3 layers. We elucidate the structure of complex vortex topologies in the PbTiO3 layers, demonstrating the promise of our method to extract material properties from thick samples.

7.
J Opt Soc Am A Opt Image Sci Vis ; 39(12): C143-C155, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36520754

ABSTRACT

A unified method for three-dimensional reconstruction of objects from transmission images collected at multiple illumination directions is described. The method may be applicable to experimental conditions relevant to absorption-based, phase-contrast, or diffraction imaging using x rays, electrons, and other forms of penetrating radiation or matter waves. Both the phase retrieval (also known as contrast transfer function correction) and the effect of Ewald sphere curvature (in the cases with a shallow depth of field and significant in-object diffraction) are incorporated in the proposed algorithm and can be taken into account. Multiple scattering is not treated explicitly but can be mitigated as a result of angular averaging that constitutes an essential feature of the method. The corresponding numerical algorithm is based on three-dimensional gridding which allows for fast computational implementation, including a straightforward parallelization. The algorithm can be used with any scanning geometry involving plane-wave illumination. A software code implementing the proposed algorithm has been developed, tested on simulated and experimental image data, and made publicly available.


Subject(s)
Algorithms , Tomography , Software
8.
Commun Biol ; 5(1): 817, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35965271

ABSTRACT

Ice thickness is arguably one of the most important factors limiting the resolution of protein structures determined by cryo-electron microscopy (cryo-EM). The amorphous atomic structure of the ice that stabilizes and protects biological samples in cryo-EM grids also imprints some additional noise in cryo-EM images. Ice that is too thick jeopardizes the success of particle picking and reconstruction of the biomolecule in the worst case and, at best, deteriorates eventual map resolution. Minimizing the thickness of the ice layer and thus the magnitude of its noise contribution is thus imperative in cryo-EM grid preparation. In this paper we introduce MeasureIce, a simple, easy to use ice thickness measurement tool for screening and selecting acquisition areas of cryo-EM grids. We show that it is possible to simulate thickness-image intensity look-up tables, also usable in SerialEM and Leginon, using elementary scattering physics and thereby adapt the tool to any microscope without time consuming experimental calibration. We benchmark our approach using two alternative techniques: the "ice channel" technique and tilt-series tomography. We also demonstrate the utility of ice thickness measurement for selecting holes in gold grids containing an Equine apoferritin sample, achieving a 1.88 Ångstrom resolution in subsequent refinement of the atomic map.


Subject(s)
Cryoelectron Microscopy/standards , Ice , Proteins/ultrastructure , Animals , Apoferritins/chemistry , Apoferritins/ultrastructure , Benchmarking , Cryoelectron Microscopy/methods , Horses , Ice/standards , Proteins/chemistry , Tomography/methods
9.
Microsc Microanal ; : 1-17, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35485646

ABSTRACT

A method for three-dimensional reconstruction of objects from defocused images collected at multiple illumination directions in high-resolution transmission electron microscopy is presented. The method effectively corrects for the Ewald sphere curvature by taking into account the in-particle propagation of the electron beam. Numerical simulations demonstrate that the proposed method is capable of accurately reconstructing biological molecules or nanoparticles from high-resolution defocused images under conditions achievable in single-particle electron cryo-microscopy or electron tomography with realistic radiation doses, non-trivial aberrations, multiple scattering, and other experimentally relevant factors. The physics of the method is based on the well-known Diffraction Tomography formalism, but with the phase-retrieval step modified to include a conjugation of the phase (i.e., multiplication of the phase by a negative constant). At each illumination direction, numerically backpropagating the beam with the conjugated phase produces maximum contrast at the location of individual atoms in the molecule or nanoparticle. The resultant algorithm, Conjugated Holographic Reconstruction, can potentially be incorporated into established software tools for single-particle analysis, such as, for example, RELION or FREALIGN, in place of the conventional contrast transfer function correction procedure, in order to account for the Ewald sphere curvature and improve the spatial resolution of the three-dimensional reconstruction.

10.
Micron ; 151: 103141, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34560356

ABSTRACT

Scanning transmission electron microscopy (STEM), where a converged electron probe is scanned over a sample's surface and an imaging, diffraction, or spectroscopic signal is measured as a function of probe position, is an extremely powerful tool for materials characterization. The widespread adoption of hardware aberration correction, direct electron detectors, and computational imaging methods have made STEM one of the most important tools for atomic-resolution materials science. Many of these imaging methods rely on accurate imaging and diffraction simulations in order to interpret experimental results. However, STEM simulations have traditionally required large calculation times, as modeling the electron scattering requires a separate simulation for each of the typically millions of probe positions. We have created the Prismatic simulation code for fast simulation of STEM experiments with support for multi-CPU and multi-GPU (graphics processing unit) systems, using both the conventional multislice and our recently-introduced PRISM method. In this paper, we introduce Prismatic version 2.0, which adds many new algorithmic improvements, an updated graphical user interface (GUI), post-processing of simulation data, and additional operating modes such as plane-wave TEM. We review various aspects of the simulation methods and codes in detail and provide various simulation examples. Prismatic 2.0 is freely available both as an open-source package that can be run using a C++ or Python command line interface, or GUI, as well within a Docker container environment.

11.
Microsc Microanal ; 27(4): 744-757, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34311809

ABSTRACT

Recent work has revived interest in the scattering matrix formulation of electron scattering in transmission electron microscopy as a stepping stone toward atomic-resolution structure determination in the presence of multiple scattering. We discuss ways of visualizing the scattering matrix that make its properties clear. Through a simulation-based case study incorporating shot noise, we shown how regularizing on this continuity enables the scattering matrix to be reconstructed from 4D scanning transmission electron microscopy (STEM) measurements from a single defocus value. Intriguingly, for crystalline samples, this process also yields the sample thickness to nanometer accuracy with no a priori knowledge about the sample structure. The reconstruction quality is gauged by using the reconstructed scattering matrix to simulate STEM images at defocus values different from that of the data from which it was reconstructed.

12.
Microsc Microanal ; 27(4): 712-743, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34018475

ABSTRACT

Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.

13.
Microsc Microanal ; : 1-15, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33843542

ABSTRACT

The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.

14.
Nat Mater ; 20(7): 956-963, 2021 07.
Article in English | MEDLINE | ID: mdl-33859383

ABSTRACT

Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long-wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity and localized structural deformations that introduce disorder and strain. In this study we used Bragg interferometry to capture atomic displacement fields in twisted bilayer graphene with twist angles <2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain were statistically evaluated, revealing the prevalence of short-range disorder in moiré heterostructures. By quantitatively mapping strain tensor fields, we uncovered two regimes of structural relaxation and disentangled the electronic contributions of constituent rotation modes. Further, we found that applied heterostrain accumulates anisotropically in saddle-point regions, generating distinctive striped strain phases. Our results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials.

15.
Microsc Microanal ; 26(4): 623-629, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32519630

ABSTRACT

Multiple electron scattering and the nonintuitive nature of image formation with coherent radiation complicate the interpretation of conventional transmission electron microscopy images. Precession of the illuminating beam in transmission electron microscopy (TEM) can lead to more robust and interpretable images with some penalty to image contrast, a technique known as dynamic hollow-cone illumination TEM. We demonstrate direct and robust imaging of light and heavy atoms in a crystalline environment with this technique. This method is similar to the annular bright-field technique in scanning transmission electron microscopy, via the principle of reciprocity. Dynamic hollow-cone illumination TEM is challenging in practice due to sensitivity to the misalignment of the precession axis, microscope objective aperture, and crystal zone axis.

16.
Ultramicroscopy ; 182: 264-275, 2017 11.
Article in English | MEDLINE | ID: mdl-28780142

ABSTRACT

Advances in microscope stability, aberration correction and detector design now make it readily possible to achieve atomic resolution energy dispersive X-ray mapping for dose resilient samples. These maps show impressive atomic-scale qualitative detail as to where the elements reside within a given sample. Unfortunately, while electron channelling is exploited to provide atomic resolution data, this very process makes the images rather more complex to interpret quantitatively than if no electron channelling occurred. Here we propose small sample tilt as a means for suppressing channelling and improving quantification of composition, whilst maintaining atomic-scale resolution. Only by knowing composition and thickness of the sample is it possible to determine the atomic configuration within each column. The effects of neighbouring atomic columns with differing composition and of residual channelling on our ability to extract exact column-by-column composition are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL