Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Am J Physiol Endocrinol Metab ; 320(6): E1053-E1067, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33843280

ABSTRACT

Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.NEW & NOTEWORTHY A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.


Subject(s)
Diet, Ketogenic , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Peroxisomes/metabolism , Physical Conditioning, Animal/physiology , Animals , Lipid Metabolism/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondrial Dynamics/physiology , Oxidation-Reduction , Oxidative Stress/physiology
2.
J Am Chem Soc ; 142(46): 19731-19744, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33166450

ABSTRACT

Hydrogen-bonding interactions have been explored in catalysis, enabling complex chemical reactions. Recently, enantioselective nucleophilic fluorination with metal alkali fluoride has been accomplished with BINAM-derived bisurea catalysts, presenting up to four NH hydrogen-bond donors (HBDs) for fluoride. These catalysts bring insoluble CsF and KF into solution, control fluoride nucleophilicity, and provide a chiral microenvironment for enantioselective fluoride delivery to the electrophile. These attributes encouraged a 1H/19F NMR study to gain information on hydrogen-bonding networks with fluoride in solution, as well as how these arrangements impact the efficiency of catalytic nucleophilic fluorination. Herein, NMR experiments enabled the determination of the number and magnitude of HB contacts to fluoride for thirteen bisurea catalysts. These data supplemented by diagnostic coupling constants 1hJNH···F- give insight into how multiple H bonds to fluoride influence reaction performance. In dichloromethane (DCM-d2), nonalkylated BINAM-derived bisurea catalyst engages two of its four NH groups in hydrogen bonding with fluoride, an arrangement that allows effective phase-transfer capability but low control over enantioselectivity for fluoride delivery. The more efficient N-alkylated BINAM-derived bisurea catalysts undergo urea isomerization upon fluoride binding and form dynamically rigid trifurcated hydrogen-bonded fluoride complexes that are structurally similar to their conformation in the solid state. Insight into how the countercation influences fluoride complexation is provided based on NMR data characterizing the species formed in DCM-d2 when reacting a bisurea catalyst with tetra-n-butylammonium fluoride (TBAF) or CsF. Structure-activity analysis reveals that the three hydrogen-bond contacts with fluoride are not equal in terms of their contribution to catalyst efficacy, suggesting that tuning individual electronic environment is a viable approach to control phase-transfer ability and enantioselectivity.

3.
Med Sci Sports Exerc ; 52(1): 37-48, 2020 01.
Article in English | MEDLINE | ID: mdl-31389908

ABSTRACT

PURPOSE: Studies suggest ketogenic diets (KD) produce favorable outcomes (health and exercise performance); however, most rodent studies have used a low-protein KD, which does not reflect the normal- to high-protein KD used by humans. Liver has an important role in ketoadaptation due to its involvement in gluconeogenesis and ketogenesis. This study was designed to test the hypothesis that exercise training (ExTr) while consuming a normal-protein KD (NPKD) would induce additive/synergistic responses in liver metabolic pathways. METHODS: Lean, healthy male C57BL/6J mice were fed a low-fat control diet (15.9% kcal protein, 11.9% kcal fat, 72.2% kcal carbohydrate) or carbohydrate-deficient NPKD (16.1% protein, 83.9% kcal fat) for 6 wk. After 3 wk on the diet, half were subjected to 3-wk treadmill ExTr (5 d·wk, 60 min·d, moderate-vigorous intensity). Upon conclusion, metabolic and endocrine outcomes related to substrate metabolism were tested in liver and pancreas. RESULTS: NPKD-fed mice had higher circulating ß-hydroxybutyrate and maintained glucose at rest and during exercise. Liver of NPKD-fed mice had lower pyruvate utilization and greater ketogenic potential as evidenced by higher oxidative rates to catabolize lipids (mitochondrial and peroxisomal) and ketogenic amino acids (leucine). ExTr had higher expression of the gluconeogenic gene, Pck1, but lower hepatic glycogen, pyruvate oxidation, incomplete fat oxidation, and total pancreas area. Interaction effects between the NPKD and ExTr were observed for intrahepatic triglycerides, as well as genes involved in gluconeogenesis, ketogenesis, mitochondrial fat oxidation, and peroxisomal markers; however, none were additive/synergistic. Rather, in each instance the interaction effects showed the NPKD and ExTr opposed each other. CONCLUSIONS: An NPKD and an ExTr independently induce shifts in hepatic metabolic pathways, but changes do not seem to be additive/synergistic in healthy mice.


Subject(s)
Diet, Ketogenic , Liver/metabolism , Physical Conditioning, Animal/physiology , 3-Hydroxybutyric Acid/blood , AMP-Activated Protein Kinases/metabolism , Animals , Blood Glucose/metabolism , Energy Metabolism , Fatty Acids/metabolism , Ketones/metabolism , Leucine/metabolism , Lipid Metabolism , Liver Glycogen/metabolism , Male , Metabolic Networks and Pathways , Mice, Inbred C57BL , Mitochondrial Dynamics , Oxidation-Reduction , Pancreas/metabolism , Pancreatic Hormones/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisomes/metabolism , Triglycerides/metabolism
4.
J Appl Physiol (1985) ; 127(1): 143-156, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31095457

ABSTRACT

Adaptations in hepatic and skeletal muscle substrate metabolism following acute and chronic (6 wk; 5 days/wk; 1 h/day) low-intensity treadmill exercise were tested in healthy male C57BL/6J mice. Low-intensity exercise maximizes lipid utilization; therefore, we hypothesized pathways involved in lipid metabolism would be most robustly affected. Acute exercise nearly depleted liver glycogen immediately postexercise (0 h), whereas hepatic triglyceride (TAG) stores increased in the early stages after exercise (0-3 h). Also, hepatic peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) gene expression and fat oxidation (mitochondrial and peroxisomal) increased immediately postexercise (0 h), whereas carbohydrate and amino acid oxidation in liver peaked 24-48 h later. Alternatively, skeletal muscle exhibited a less robust response to acute exercise as stored substrates (glycogen and TAG) remained unchanged, induction of PGC-1α gene expression was delayed (up at 3 h), and mitochondrial substrate oxidation pathways (carbohydrate, amino acid, and lipid) were largely unaltered. Peroxisomal lipid oxidation exhibited the most dynamic changes in skeletal muscle substrate metabolism after acute exercise; however, this response was also delayed (peaked 3-24 h postexercise), and expression of peroxisomal genes remained unaffected. Interestingly, 6 wk of training at a similar intensity limited weight gain, increased muscle glycogen, and reduced TAG accrual in liver and muscle; however, substrate oxidation pathways remained unaltered in both tissues. Collectively, these results suggest changes in substrate metabolism induced by an acute low-intensity exercise bout in healthy mice are more rapid and robust in liver than in skeletal muscle; however, training at a similar intensity for 6 wk is insufficient to induce remodeling of substrate metabolism pathways in either tissue. NEW & NOTEWORTHY Effects of low-intensity exercise on substrate metabolism pathways were tested in liver and skeletal muscle of healthy mice. This is the first study to describe exercise-induced adaptations in peroxisomal lipid metabolism and also reports comprehensive adaptations in mitochondrial substrate metabolism pathways (carbohydrate, lipid, and amino acid). Acute low-intensity exercise induced shifts in mitochondrial and peroxisomal metabolism in both tissues, but training at this intensity did not induce adaptive remodeling of metabolic pathways in healthy mice.


Subject(s)
Acclimatization/physiology , Liver/metabolism , Liver/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Animals , Exercise Test/methods , Glycogen/metabolism , Lipid Metabolism/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/physiology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/physiology , Musculoskeletal Physiological Phenomena , Oxidation-Reduction , Oxidative Stress/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/metabolism
5.
J Am Chem Soc ; 141(7): 2878-2883, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30689372

ABSTRACT

Potassium fluoride (KF) is an ideal reagent for fluorination because it is safe, easy to handle and low-cost. However, poor solubility in organic solvents coupled with limited strategies to control its reactivity has discouraged its use for asymmetric C-F bond formation. Here, we demonstrate that hydrogen bonding phase-transfer catalysis with KF provides access to valuable ß-fluoroamines in high yields and enantioselectivities. This methodology employs a chiral N-ethyl bis-urea catalyst that brings solid KF into solution as a tricoordinated urea-fluoride complex. This operationally simple reaction affords enantioenriched fluoro-diphenidine (up to 50 g scale) using 0.5 mol % of recoverable bis-urea catalyst.

6.
Science ; 360(6389): 638-642, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29748281

ABSTRACT

Common anionic nucleophiles such as those derived from inorganic salts have not been used for enantioselective catalysis because of their insolubility. Here, we report that merging hydrogen bonding and phase-transfer catalysis provides an effective mode of activation for nucleophiles that are insoluble in organic solvents. This catalytic manifold relies on hydrogen bonding complexation to render nucleophiles soluble and reactive, while simultaneously inducing asymmetry in the ensuing transformation. We demonstrate the concept using a chiral bis-urea catalyst to form a tridentate hydrogen bonding complex with fluoride from its cesium salt, thereby enabling highly efficient enantioselective ring opening of episulfonium ion. This fluorination method is synthetically valuable considering the scarcity of alternative protocols and points the way to wider application of the catalytic approach with diverse anionic nucleophiles.

7.
Org Biomol Chem ; 15(38): 8179-8185, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28926074

ABSTRACT

Silyl-substituted aromatic compounds can participate as the electrophilic component in palladium-catalysed cross-couplings, and reactivity is enhanced by a neighbouring silyl-group. Products analogous to those obtained from C-H activation chemistry are accessible by this means with the additional benefit of regiochemistry defined by the site of silyl substitution. DFT studies described here show that the mechanism of C-Si cleavage is distinct from previously recognised mechanisms for C-H cleavage, with a cascade of silyl intermediates en route to a stable product. The amide directing-groups are involved only in the stabilisation of palladacyclic intermediates, and are never disposed to activate silicon directly. 5-Membered and 6-membered palladacycles are known to behave differently in coupling reactions and the calculations reveal underlying reasons in the cationic pathways studied here.

8.
Ann Thorac Surg ; 103(1): e57-e59, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28007276

ABSTRACT

Transcatheter valve implantation in the mitral position with severe calcific mitral stenosis has been described in patients who are at an increased risk for conventional mitral valve surgical procedures. We report the direct deployment of the Sapien 3 valve in the mitral position with severe mitral annular calcification through a sternotomy in an arrested heart in two cases.


Subject(s)
Calcinosis/complications , Cardiomyopathies/complications , Heart Valve Prosthesis Implantation/methods , Mitral Valve Stenosis/surgery , Mitral Valve/surgery , Aged , Aged, 80 and over , Calcinosis/diagnosis , Calcinosis/surgery , Cardiomyopathies/diagnosis , Cardiomyopathies/surgery , Echocardiography, Three-Dimensional , Echocardiography, Transesophageal , Female , Humans , Male , Mitral Valve/diagnostic imaging , Mitral Valve Stenosis/diagnosis , Mitral Valve Stenosis/etiology , Severity of Illness Index
9.
J Am Chem Soc ; 138(40): 13314-13325, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27608274

ABSTRACT

Hydrogen bonding with fluoride is a key interaction encountered when analyzing the mode of action of 5'-fluoro-5'-deoxyadenosine synthase, the only known enzyme capable of catalyzing the formation of a C-F bond from F-. Further understanding of the effect of hydrogen bonding on the structure and reactivity of complexed fluoride is therefore important for catalysis and numerous other applications, such as anion supramolecular chemistry. Herein we disclose a detailed study examining the structure of 18 novel urea-fluoride complexes in the solid state, by X-ray and neutron diffraction, and in solution phase and explore the reactivity of these complexes as a fluoride source in SN2 chemistry. Experimental data show that the structure, coordination strength, and reactivity of the urea-fluoride complexes are tunable by modifying substituents on the urea receptor. Hammett analysis of aryl groups on the urea indicates that fluoride binding is dependent on σp and σm parameters with stronger binding being observed for electron-deficient urea ligands. For the first time, defined urea-fluoride complexes are used as fluoride-binding reagents for the nucleophilic substitution of a model alkyl bromide. The reaction is slower in comparison with known alcohol-fluoride complexes, but SN2 is largely favored over E2, at a ratio surpassing all hydrogen-bonded complexes documented in the literature for the model alkyl bromide employed. Increased second-order rate constants at higher dilution support the hypothesis that the reactive species is a 1:1 urea-fluoride complex of type [UF]- (U = urea) resulting from partial dissociation of the parent compound [U2F]-. The dissociation processes can be quantified through a combination of UV and NMR assays, including DOSY and HOESY analyses that illuminate the complexation state and H-bonding in solution.

10.
Org Biomol Chem ; 14(23): 5251-7, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27184358

ABSTRACT

C-H activation plays a central role in organometallic catalysis. Concerted metallation-deprotonation (CMD) has been dominant as the pathway for C-H bond cleavage. In the course of studying the mechanism of C-H activation of arylamides and arylureas with Pd complexes as part of catalytic oxidative Heck reactions, DFT calculations were carried out. The turnover-limiting C-H activation is acid-catalysed and can occur readily in the absence of acetate or other coordinating bases. The calculations simulated experiment, so that ligated sulfonate and water, both previously observed by X-ray characterization, were incorporated in the model. A Wheland-type complex between acetanilide and Pd was readily located, but the reactive C-H and the coordinated sulfonate were poorly placed for intramolecular proton transfer. Involvement of a water molecule coordinated to sulfonate provides a low-energy pathway to the palladacycle. The relative reactivity of substituted acetanilides and arylureas according to this model fits well with existing literature. General-base catalysis as described here has broader potential.


Subject(s)
Anilides/chemistry , Carbon/chemistry , Hydrogen/chemistry , Palladium/chemistry , Urea/chemistry , Water/chemistry , Catalysis , Models, Molecular , Molecular Conformation , Quantum Theory
11.
Org Biomol Chem ; 13(37): 9619-28, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26260922

ABSTRACT

In 1954 Schlesinger and co-workers observed the direct reaction of diboron tetrachloride with simple organic compounds under mild conditions, the 1,2 addition product being formed with either ethylene or acetylene. In the following 25 years a series of addition reactions to simple alkenes, alkynes and dienes was demonstrated. B2F4 was shown to react in similar manner, albeit under more forcing conditions. Crucially, it was demonstrated that the addition to (E)- or (Z)-but-2-ene occurred with cis-stereospecificity. Only sporadic interest was shown in this field thereafter until catalysed addition reactions of diboron reagents were realized. Encouraged by this revival of interest through the discovery of transition-metal and nucleophilic catalysis of diboryl additions, DFT analysis of uncatalysed additions of B2X4 has been carried out and interpreted. This includes the relative reactivity of several B-B reagents with ethene, and that of B2Cl4vs. B2F4 additions, including benzene, naphthalene and C60 as reactants. This allows the analysis of relative reactivity vis-à-vis substitution on boron, and also direct comparison with hydroboration by HBCl2. [4 + 2] Addition of diboron reagents to dienes with B-B cleavage competes with direct [2 + 2] addition, favourably so for B2F4. The computational results demonstrate that the stereospecific addition to isomeric but-2-enes is a rare concerted [2σs + 2πs] process.

12.
JACC Cardiovasc Interv ; 8(9): 1207-1217, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26292584

ABSTRACT

OBJECTIVES: This study sought to compare the health status outcomes for patients treated with either self-expanding transcatheter aortic valve replacement (TAVR) or surgical aortic valve replacement (AVR). BACKGROUND: In patients at increased surgical risk, TAVR with a self-expanding bioprosthesis is associated with improved 1-year survival compared with AVR. However, elderly patients may be just as concerned with quality-of-life improvement as with prolonged survival as a goal of treatment. METHODS: Between 2011 and 2012, 795 patients with severe aortic stenosis at increased surgical risk were randomized to TAVR or AVR in the CoreValve US Pivotal Trial. Health status was assessed at baseline, 1 month, 6 months, and 1 year using the Kansas City Cardiomyopathy Questionnaire, Medical Outcomes Study Short-Form 12 Questionnaire, and EuroQOL 5-dimension questionnaire; growth curve models were used to examine changes over time. RESULTS: Over the 1-year follow-up period, disease-specific and generic health status improved substantially for both treatment groups. At 1 month, there was a significant interaction between the benefit of TAVR over AVR and access site. Among surviving patients eligible for iliofemoral (IF) access, there was a clinically relevant early benefit with TAVR across all disease-specific and generic health status measures. Among the non-IF cohort, however, most health status measures were similar for TAVR and AVR, although there was a trend toward early benefit with TAVR on the Short-Form 12 Questionnaire's physical health scale. There were no consistent differences in health status between TAVR and AVR at the later time points. CONCLUSIONS: Health status improved substantially in surviving patients with increased surgical risk who were treated with either self-expanding TAVR or AVR. TAVR via the IF route was associated with better early health status compared with AVR, but there was no early health status benefit with non-IF TAVR compared with AVR. (Safety and Efficacy Study of the Medtronic CoreValve® System in the Treatment of Symptomatic Severe Aortic Stenosis in High Risk and Very High Risk Subjects Who Need Aortic Valve Replacement; NCT01240902).


Subject(s)
Aortic Valve Stenosis/therapy , Aortic Valve/surgery , Cardiac Catheterization/methods , Health Status , Heart Valve Prosthesis Implantation/methods , Aged , Aged, 80 and over , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/surgery , Bioprosthesis , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Cardiac Catheterization/mortality , Female , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/mortality , Humans , Male , Mental Health , Prosthesis Design , Quality of Life , Risk Assessment , Risk Factors , Severity of Illness Index , Social Behavior , Surveys and Questionnaires , Time Factors , Treatment Outcome
13.
Chem Sci ; 6(9): 5293-5302, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-29449931

ABSTRACT

The nucleophilic reactivity of fluoride ion is altered in the presence of hydrogen-bond donors, including alcohols. Relatively little is known about the coordination involved; to rectify this, the X-ray structures of fourteen novel fluoride-alcohol complexes with tetrabutylammonium as the counterion have been determined. The coordination number varies from two to four depending on the steric bulk of the alcohol and is closely linked to trends in reactivity. This diversity in coordination stoichiometry is unprecedented but significant, as it implies differences in the ability of the fluoride-alcohol complexes to dissociate in solution with release of a more active and/or selective fluoride source.

14.
J Org Chem ; 79(12): 5391-400, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24806741

ABSTRACT

Among the range of P,N-chelating ligands that have been employed in asymmetric catalysis, those relying on atropisomerism for the stability of individual enantiomers form a definable class. These APN (atropos P,N) ligands require a specific type of biaryl, with one component carrying a pendant phosphine unit, most commonly diaryl substituted, and the other bearing an sp(2)-nitrogen adjacent to the biaryl link. When substituents in the biaryl inhibit rotation about the linking bond, stable nonracemizing six-membered ring chelates can be formed. This Perspective relates the background to the initial synthesis in 1993 of Quinap, the original member of the series, and initial observations on its effectiveness in asymmetric catalysis. The current state of play in development of syntheses of this and other members of the APN ligand family is assessed, and their applications in asymmetric catalysis are presented. These include hydroboration and diboration of alkenes, 1,3-dipolar cycloadditions, alkynylation of iminium salts in a three-component (A(3)) condensation, and conjugate additions of Cu acetylides.

15.
Angew Chem Int Ed Engl ; 53(16): 4181-5, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24644083

ABSTRACT

This paper describes the hydrofluorination of alkenes through sequential H(-) and F(+) addition under palladium catalysis. The reaction is cis specific, thus providing access to benzylic fluorides. The mechanism of this reaction involves an ionic pathway and is distinct from known hydrofluorinations involving radical intermediates. The first catalytic enantioselective hydrofluorination is also disclosed.

16.
Chemistry ; 20(4): 1116-25, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24375651

ABSTRACT

Using a combination of electrochemical and NMR techniques, the oxidative addition of PhX to three closely related bis-diphosphine P2Pd(0) complexes, where the steric bulk of just one substituent was varied, has been analysed quantitatively. For the complex derived from MetBu2P, a rapid reaction ensued with PhI following an associative mechanism, and data was also obtained by cyclic voltammetry for PhOTs, PhBr and PhCl, revealing distinct relative reactivities from the related (PCx3)2Pd complex (Cx = cyclohexyl) previously studied. The corresponding EttBu2P complex reacted more slowly with PhI and was studied by NMR spectroscopy. The reaction course indicated a mixture of pathways, with contribution from a component that was [PhI] independent. For the CxtBu2P complex, reaction was again monitored by NMR spectroscopy, and was even slower. At high PhI concentrations reaction was predominantly linear in [PhI], but at lower concentrations the [PhI] independent pathway was again observed, and an accelerating influence of the reaction product was observed over the concentration range. The NMR spectra of the EttBu2P and CxtBu2P complexes conducted in C6D6 shows some line broadening that was augmented on addition of PhI. NMR experiments carried out in parallel show that there is rapid ligand exchange between free phosphine and the Pd2Pd complex and also a slow ligand crossover between different P2Pd complexes. DFT calculations were carried out to further test the feasibility of C6D6 involvement in the oxidative addition process, and located Van der Waals complexes for association of the P2Pd(0) complexes with either PhI or benzene. PhI or solvent-assisted pathways for ligand loss are both lower in energy than direct ligand dissociation. Taken all together, these results provide a consistent explanation for the surprising complexity of an apparently simple reaction step. The clear dividing line between reactions that give a di- or monophosphine palladium complex after oxidative addition clarifies the participation of the ligand in coupling catalysis.

17.
Chem Commun (Camb) ; 49(76): 8430-40, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23949625

ABSTRACT

Several closely related palladium-catalysed reactions involve the addition of Pd-C across an alkene, and subsequent ß-elimination of Pd-H to give a more substituted alkene. The Pd-C precursor, normally possessing an sp(2) carbon bound to palladium, can be formed in several different ways, leading to sub-classes of reaction based on a common principle and convergent outcomes. The reaction pathway can vary from simple to highly subtle depending on the nature of the reactants and the ligation of the catalyst. Mechanistic analysis provides results that elucidate the pathway and link the different reaction types. The identification of reactive intermediates by NMR, ES-MS and other spectroscopic techniques, or by less direct methods, is an integral part of the process. This Feature Article covers ligand-free palladium catalysis, including the contributions of the authors, and separates catalysis where ligands are involved into cationic and neutral pathways.

18.
Org Biomol Chem ; 11(28): 4591-601, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23636132

ABSTRACT

All X-ray structures of PN ligands forming 6-ring metal complex chelates have been retrieved from the CDS database, and those lacking chelate chirality filtered out. Many of the remainder fit naturally into four main families (PPFA, FcPhox, Phox and Quinap), which have been widely applied to asymmetric catalysis in diverse ways. It is known through experimental observation that certain of these ligand structures are more effective for specific classes of reaction but there has been little by way of explanation for their divergent behaviour. In this paper we examine the wide variation of conformations within individual families of PN complexes in the solid state, establish common features, and make cross-correlations with their effectiveness in specific catalytic asymmetric reactions. The extent of rigidity in the chelate varies widely and yet flexible complexes may be extremely effective in asymmetric catalysis. These observations emphasise the importance of induced fit between reactants and catalyst and militate against over-reliance on rigid lock-and-key models.

20.
Angew Chem Int Ed Engl ; 51(42): 10448-50, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22968902

ABSTRACT

Calculations help: Recent work from Schoenebeck's group has demonstrated beyond reasonable doubt that the dimeric LPd(I) Br catalysts that are widely used in coupling chemistry operate through prior formal reduction to an LPd(0) species. Conversely, L(2)Pd(0) catalysts can be activated by oxidation. In other cases a binuclear species can persist through the catalytic cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...