Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Brain Sci ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38671984

ABSTRACT

Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) allows for the study of brain dynamics in health and disease. Cranial muscle activation can decrease the interpretability of TMS-EEG signals by masking genuine EEG responses and increasing the reliance on preprocessing methods but can be at least partly prevented by coil rotation coupled with the online monitoring of signals; however, the extent to which changing coil rotation may affect TMS-EEG signals is not fully understood. Our objective was to compare TMS-EEG data obtained with an optimal coil rotation to induce motor evoked potentials (M1standard) while rotating the coil to minimize cranial muscle activation (M1emg). TMS-evoked potentials (TEPs), TMS-related spectral perturbation (TRSP), and intertrial phase clustering (ITPC) were calculated in both conditions using two different preprocessing pipelines based on independent component analysis (ICA) or signal-space projection with source-informed reconstruction (SSP-SIR). Comparisons were performed with cluster-based correction. The concordance correlation coefficient was computed to measure the similarity between M1standard and M1emg TMS-EEG signals. TEPs, TRSP, and ITPC were significantly larger in M1standard than in M1emg conditions; a lower CCC than expected was also found. These results were similar across the preprocessing pipelines. While rotating the coil may be advantageous to reduce cranial muscle activation, it may result in changes in TMS-EEG signals; therefore, this solution should be tailored to the specific experimental context.

2.
Brain Sci ; 13(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38002483

ABSTRACT

Enhancing cerebellar activity influences motor cortical activity and contributes to motor adaptation, though it is unclear which neurophysiological mechanisms contributing to adaptation are influenced by the cerebellum. Pre-movement beta event-related desynchronization (ß-ERD), which reflects a release of inhibitory control in the premotor cortex during movement planning, is one mechanism that may be modulated by the cerebellum through cerebellar-premotor connections. We hypothesized that enhancing cerebellar activity with intermittent theta burst stimulation (iTBS) would improve adaptation rates and increase ß-ERD during motor adaptation. Thirty-four participants were randomly assigned to an active (A-iTBS) or sham cerebellar iTBS (S-iTBS) group. Participants performed a visuomotor task, using a joystick to move a cursor to targets, prior to receiving A-iTBS or S-iTBS, following which they completed training with a 45° rotation to the cursor movement. Behavioural adaptation was assessed using the angular error of the cursor path relative to the ideal trajectory. The results showed a greater adaptation rate following A-iTBS and an increase in ß-ERD, specific to the high ß range (20-30 Hz) during motor planning, compared to S-iTBS, indicative of cerebellar modulation of the motor cortical inhibitory control network. The enhanced release of inhibitory activity persisted throughout training, which suggests that the cerebellar influence over the premotor cortex extends beyond adaptation to other stages of motor learning. The results from this study further understanding of cerebellum-motor connections as they relate to acquiring motor skills and may inform future skill training and rehabilitation protocols.

3.
J Physiol ; 601(15): 3187-3199, 2023 08.
Article in English | MEDLINE | ID: mdl-35776944

ABSTRACT

Transcranial alternating current stimulation (TACS) is commonly used to synchronize a cortical area and its outputs to the stimulus waveform, but gathering evidence for this based on brain recordings in humans is challenging. The corticospinal tract transmits beta oscillations (∼21 Hz) from the motor cortex to tonically contracted limb muscles linearly. Therefore, muscle activity may be used to measure the level of beta entrainment in the corticospinal tract due to TACS over the motor cortex. Here, we assessed whether TACS is able to modulate the neural inputs to muscles, which would provide indirect evidence for TACS-driven neural entrainment. In the first part of the study, we ran simulations of motor neuron (MN) pools receiving inputs from corticospinal neurons with different levels of beta entrainment. Results suggest that MNs are highly sensitive to changes in corticospinal beta activity. Then, we ran experiments on healthy human subjects (N = 10) in which TACS (at 1 mA) was delivered over the motor cortex at 21 Hz (beta stimulation), or at 7 Hz or 40 Hz (control conditions) while the abductor digiti minimi or the tibialis anterior muscle were tonically contracted. Muscle activity was measured using high-density electromyography, which allowed us to decompose the activity of pools of motor units innervating the muscles. By analysing motor unit pool activity, we observed that none of the TACS conditions could consistently alter the spectral contents of the common neural inputs received by the muscles. These results suggest that 1 mA TACS over the motor cortex given at beta frequencies does not entrain corticospinal activity. KEY POINTS: Transcranial alternating current stimulation (TACS) is commonly used to entrain the communication between brain regions. It is challenging to find direct evidence supporting TACS-driven neural entrainment due to the technical difficulties in recording brain activity during stimulation. Computational simulations of motor neuron pools receiving common inputs in the beta (∼21 Hz) band indicate that motor neurons are highly sensitive to corticospinal beta entrainment. Motor unit activity from human muscles does not support TACS-driven corticospinal entrainment.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Humans , Motor Cortex/physiology , Motor Neurons , Muscle, Skeletal/physiology , Electromyography , Evoked Potentials, Motor/physiology
4.
Neuroscience ; 475: 103-116, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34487820

ABSTRACT

Acute exercise can modulate the excitability of the non-exercised upper-limb representation in the primary motor cortex (M1). Accumulating evidence demonstrates acute exercise affects measures of M1 intracortical excitability, with some studies also showing altered corticospinal excitability. However, the influence of distinct M1 interneuron populations on the modulation of intracortical and corticospinal excitability following acute exercise is currently unknown. We assessed the impact of an acute bout of leg cycling exercise on unique M1 interneuron excitability of a non-exercised intrinsic hand muscle using transcranial magnetic stimulation (TMS) in young adults. Specifically, posterior-to-anterior (PA) and anterior-to-posterior (AP) TMS current directions were used to measure the excitability of distinct populations of interneurons before and after an acute bout of exercise or rest. Motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) were measured in the PA and AP current directions in M1 at two time points separated by 25 min of rest, as well as immediately and 30 min after a 25-minute bout of moderate-intensity cycling exercise. Thirty minutes after exercise, MEP amplitudes were significantly larger than other timepoints when measured with AP current, whereas MEP amplitudes derived from PA current did not show this effect. Similarly, SICI was significantly decreased immediately following acute exercise measured with AP but not PA current. Our findings suggest that the excitability of unique M1 interneurons are differentially modulated by acute exercise. These results indicate that M1 interneurons preferentially activated by AP current may play an important role in the exercise-induced modulation of intracortical and corticospinal excitability.


Subject(s)
Motor Cortex , Electromyography , Evoked Potentials, Motor , Exercise , Humans , Interneurons , Muscle, Skeletal , Transcranial Magnetic Stimulation , Young Adult
5.
Brain Inj ; 35(10): 1143-1161, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34384288

ABSTRACT

OBJECTIVES: To investigate neurophysiological alterations within the typical symptomatic period after concussion (1-month) and throughout recovery (6-months) in adolescents; and (2) to examine relationships between neurophysiological and upper limb kinematic outcomes.METHODS: 18 adolescents with concussion were compared to 17 healthy controls. Transcranial magnetic stimulation (TMS) was used to assess neurophysiological differences between groups including: short- and long-interval intracortical inhibition, intracortical facilitation, short- and long-latency afferent inhibition, afferent facilitation, and transcallosal inhibition (TCI). Behavioral measures of upper limb kinematics were assessed with a robotic device.RESULTS: Mixed model analysis of neurophysiological data identified two key findings. First, participants with concussion demonstrated delayed onset of interhemispheric inhibition, as indexed by TCI, compared to healthy controls. Second, our exploratory analysis indicated that the magnitude of TCI onset delay in adolescents with concussion was related to upper limb kinematics.CONCLUSIONS: Our findings indicate that concussion in adolescence alters interhemispheric communication. We note relationships between neurophysiological and kinematic data, suggesting an affinity for individuals with less concussion-related physiological change to improve their motor behavior over time. These data serve as an important step in future development of assessments (neurobiological and clinical) and interventions for concussion.


Subject(s)
Motor Cortex , Adolescent , Child , Communication , Evoked Potentials, Motor , Functional Laterality , Humans , Neural Inhibition , Transcranial Magnetic Stimulation
6.
Clin Neurophysiol ; 132(10): 2431-2439, 2021 10.
Article in English | MEDLINE | ID: mdl-34454270

ABSTRACT

OBJECTIVE: The purpose of this investigation was to better understand the effects of concussions on the ability to selectively up or down-regulate incoming somatosensory information based on relevance. METHODS: Median nerve somatosensory-evoked potentials (SEPs) were elicited from electrical stimulation and recorded from scalp electrodes while participants completed tasks that altered the relevance of specific somatosensory information being conveyed along the stimulated nerve. RESULTS: Within the control group, SEP amplitudes for task-relevant somatosensory information were significantly greater than for non-relevant somatosensory information at the earliest cortical processing potentials (N20-P27). Alternatively, the concussion history group showed similar SEP amplitudes for all conditions at early processing potentials, however a pattern similar to controls emerged later in the processing stream (P100) where both movement-related gating and facilitation of task-relevant information were present. CONCLUSIONS: Previously concussed participants demonstrated impairments in the ability to up-regulate relevant somatosensory information at early processing stages. These effects appear to be chronic, as this pattern was observed on average several years after participants' most recent concussion. SIGNIFICANCE: Given the role of the prefrontal cortex in relevancy-based facilitation during movement-related gating, these findings lend support to the notion that this brain area may be particularly vulnerable to concussive forces.


Subject(s)
Brain Concussion/physiopathology , Evoked Potentials, Somatosensory/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Somatosensory Cortex/physiology , Adult , Brain Concussion/diagnosis , Electric Stimulation/methods , Female , Humans , Male , Median Nerve/physiology , Movement/physiology , Time Factors , Young Adult
7.
Neurorehabil Neural Repair ; 35(4): 307-320, 2021 04.
Article in English | MEDLINE | ID: mdl-33576318

ABSTRACT

BACKGROUND: In preclinical models, behavioral training early after stroke produces larger gains compared with delayed training. The effects are thought to be mediated by increased and widespread reorganization of synaptic connections in the brain. It is viewed as a period of spontaneous biological recovery during which synaptic plasticity is increased. OBJECTIVE: To look for evidence of a similar change in synaptic plasticity in the human brain in the weeks and months after ischemic stroke. METHODS: We used continuous theta burst stimulation (cTBS) to activate synapses repeatedly in the motor cortex. This initiates early stages of synaptic plasticity that temporarily reduces cortical excitability and motor-evoked potential amplitude. Thus, the greater the effect of cTBS on the motor-evoked potential, the greater the inferred level of synaptic plasticity. Data were collected from separate cohorts (Australia and UK). In each cohort, serial measurements were made in the weeks to months following stroke. Data were obtained for the ipsilesional motor cortex in 31 stroke survivors (Australia, 66.6 ± 17.8 years) over 12 months and the contralesional motor cortex in 29 stroke survivors (UK, 68.2 ± 9.8 years) over 6 months. RESULTS: Depression of cortical excitability by cTBS was most prominent shortly after stroke in the contralesional hemisphere and diminished over subsequent sessions (P = .030). cTBS response did not differ across the 12-month follow-up period in the ipsilesional hemisphere (P = .903). CONCLUSIONS: Our results provide the first neurophysiological evidence consistent with a period of enhanced synaptic plasticity in the human brain after stroke. Behavioral training given during this period may be especially effective in supporting poststroke recovery.


Subject(s)
Evoked Potentials, Motor/physiology , Ischemic Stroke/physiopathology , Motor Cortex/physiopathology , Neuronal Plasticity/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Time Factors , Transcranial Magnetic Stimulation
8.
Clin Neurophysiol ; 132(1): 191-199, 2021 01.
Article in English | MEDLINE | ID: mdl-33302061

ABSTRACT

OBJECTIVES: Reduced corticospinal excitability at rest is associated with post-stroke fatigue (PSF). However, it is not known if corticospinal excitability prior to a movement is also altered in fatigue which may then influence subsequent behaviour. We hypothesized that the levels of PSF can be explained by differences in modulation of corticospinal excitability during movement preparation. METHODS: 73 stroke survivors performed an auditory reaction time task. Corticospinal excitability was measured using transcranial magnetic stimulation. Fatigue was quantified using the fatigue severity scale. The effect of time and fatigue on corticospinal excitability and reaction time was analysed using a mixed effects model. RESULTS: Those with greater levels of PSF showed reduced suppression of corticospinal excitability during movement preparation and increased facilitation immediately prior to movement onset (ß = -0.0066, t = -2.22, p = 0.0263). Greater the fatigue, slower the reaction times the closer the stimulation time to movement onset (ß = 0.0024, t = 2.47, p = 0.0159). CONCLUSIONS: Lack of pre-movement modulation of corticospinal excitability in high fatigue may indicate poor sensory processing supporting the sensory attenuation model of fatigue. SIGNIFICANCE: We take a systems-based approach and investigate the motor system and its role in pathological fatigue allowing us to move towards gaining a mechanistic understanding of chronic pathological fatigue.


Subject(s)
Evoked Potentials, Motor/physiology , Fatigue/physiopathology , Movement/physiology , Pyramidal Tracts/physiopathology , Reaction Time/physiology , Stroke/physiopathology , Acoustic Stimulation , Aged , Cross-Sectional Studies , Electromyography , Fatigue/etiology , Female , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Muscle, Skeletal/physiopathology , Stroke/complications , Transcranial Magnetic Stimulation
9.
Eur J Neurosci ; 52(12): 4779-4790, 2020 12.
Article in English | MEDLINE | ID: mdl-32692429

ABSTRACT

Acute cycling exercise can modulate motor cortical circuitry in the non-exercised upper-limb. Within the primary motor cortex, measures of intracortical inhibition are reduced and intracortical facilitation is enhanced following acute exercise. Further, acute cycling exercise decreases interhemispheric inhibition between the motor cortices and lowers cerebellar-to-motor cortex inhibition. Yet, investigations into the effects of acute exercise on sensorimotor integration, referring to the transfer of incoming afferent information from the primary somatosensory cortex to motor cortex, are lacking. The current work addresses this gap in knowledge with two experimental sessions. In the first session, we tested the exercise-induced changes in somatosensory and motor excitability by assessing somatosensory (SEP) and motor evoked potentials (MEPs). In the second session, we explored the effects of acute cycling exercise on short- (SAI) and long-latency afferent inhibition (LAI), and afferent facilitation. In both experimental sessions, neurophysiological measures were obtained from the non-exercised upper-limb muscle, tested at two time points pre-exercise separated by a 25-min period of rest. Next, a 25-min bout of moderate-intensity lower-limb cycling was performed with measures assessed at two time points post-exercise. Acute lower-limb cycling increased LAI, without modulation of SAI or afferent facilitation. Further, there were no exercise-induced changes to SEP or MEP amplitudes. Together, these results suggest that acute exercise has unique effects on sensorimotor integration, which are not accompanied by concurrent changes in somatosensory or motor cortical excitability.


Subject(s)
Motor Cortex , Transcranial Magnetic Stimulation , Evoked Potentials, Motor , Exercise , Neural Inhibition
11.
Brain Res ; 1707: 45-53, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30468723

ABSTRACT

The ability to actively suppress, or gate, irrelevant sensory information is needed for safe and efficient walking in sensory-rich environments. Both attention and the late phase of motor preparation alter somatosensory evoked potentials (SEPs) in healthy adults. The aim of this study was to examine the effect of attention on the processing of irrelevant somatosensory information during the early phase of preparation of plantarflexion movements. Young healthy individuals received tibial nerve stimulation while electroencephalography (EEG) recorded SEPs over the Cz electrode. Three conditions were tested in both legs: 1) Rest, 2) Attend To the stimulated limb, and 3) Attend Away from the stimulated limb. In conditions 2 and 3, vibration (80 Hz) was applied over the medial soleus muscle to cue voluntary plantarflexion movements of the stimulated (Attend To) or non-stimulated leg (Attend Away). Only SEPs delivered during early preparation were averaged for statistical analysis. Results demonstrated a main effect of condition for the N40 and N70 indicating that SEP amplitudes in the Attend To condition were smaller than rest (p ≤ 0.02). For the P50, no interaction effects or main effects were found (p ≥ 0.08). There was no main effect of leg for any component measured. The results indicate that gating of irrelevant sensory information during early preparation occurs in the leg when attention is directed within the same limb. If attention alters the somatosensory stimuli from a leg movement, then directing attention may affect safe community walking.


Subject(s)
Perception/physiology , Sensation/physiology , Somatosensory Cortex/physiology , Adult , Attention/physiology , Electric Stimulation , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Female , Healthy Volunteers , Humans , Leg/physiology , Male , Median Nerve , Movement/physiology , Tibial Nerve
12.
Eur J Neurosci ; 48(12): 3534-3551, 2018 12.
Article in English | MEDLINE | ID: mdl-30151944

ABSTRACT

The ability to actively suppress, or gate, irrelevant sensory information is required for safe and efficient walking in sensory-rich environments. Both motor attention and motor planning alter somatosensory evoked potentials (SEPs) in healthy adults. This study's aim was to examine the effect of motor attention on processing of irrelevant somatosensory information during plantar flexion motor planning after stroke. Thirteen healthy older adults and 11 individuals with stroke participated. Irrelevant tibial nerve stimulation was delivered while SEPs were recorded over Cz, overlaying the leg portion of the sensorimotor cortex at the vertex of the head. Three conditions were tested in both legs: (1) Rest, (2) Attend To, and (3) Attend Away from the stimulated limb. In conditions 2 and 3, relevant vibration cued voluntary plantar flexion movements of the stimulated (Attend To) or non-stimulated (Attend Away) leg. SEP amplitudes were averaged during motor planning per condition. Individuals with stroke did not show attention-mediated gating of the N40 component associated with irrelevant somatosensory information during motor planning. It may be that dysfunction in pathways connecting to area 3b explains the lack of attention-mediated gating of the N40. Also, attention-mediated gating during motor planning explained significant and unique variance in a measure of community balance and mobility combined with response time. Thus, the ability to gate irrelevant somatosensory information appears important for stepping in both older adults and after stroke. Our data suggest that therapies that direct motor attention could positively impact walking after stroke.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Movement/physiology , Somatosensory Cortex/physiology , Stroke/physiopathology , Adult , Aged , Attention/physiology , Electric Stimulation/methods , Electroencephalography , Female , Humans , Male , Median Nerve/physiopathology , Middle Aged , Reaction Time , Tibial Nerve/physiopathology
13.
Pediatrics ; 141(5)2018 05.
Article in English | MEDLINE | ID: mdl-29678928

ABSTRACT

CONTEXT: Pediatric mild traumatic brain injury (mTBI) is a common and poorly understood injury. Neuroimaging indexes brain injury and outcome after pediatric mTBI, but remains largely unexplored. OBJECTIVE: To investigate the differences in neuroimaging findings in children/youth with mTBI. Measures of behavior, symptoms, time since injury, and age at injury were also considered. DATA SOURCES: A systematic review was conducted up to July 6, 2016. STUDY SELECTION: Studies were independently screened by 2 authors and included if they met predetermined eligibility criteria: (1) children/youth (5-18 years of age), (2) diagnosis of mTBI, and (3) use of neuroimaging. DATA EXTRACTION: Two authors independently appraised study quality and extracted demographic and outcome data. RESULTS: Twenty-two studies met the eligibility criteria, involving 448 participants with mTBI (mean age = 12.7 years ± 2.8). Time postinjury ranged from 1 day to 5 years. Seven different neuroimaging methods were investigated in included studies. The most frequently used method, diffusion tensor imaging (41%), had heterogeneous findings with respect to the specific regions and tracts that showed group differences. However, group differences were observed in many regions containing the corticospinal tract, portions of the corpus callosum, or frontal white-matter regions; fractional anisotropy was increased in 88% of the studies. LIMITATIONS: This review included a heterogeneous sample with regard to participant ages, time since injury, symptoms, and imaging methods which prevented statistical pooling/modelling. CONCLUSIONS: These data highlight essential priorities for future research (eg, common data elements) that are foundational to progress the understanding of pediatric concussion.


Subject(s)
Brain Concussion/diagnostic imaging , Neuroimaging/methods , Humans , Neuropsychological Tests , Symptom Assessment , Time Factors
14.
Restor Neurol Neurosci ; 36(2): 245-259, 2018.
Article in English | MEDLINE | ID: mdl-29526859

ABSTRACT

BACKGROUND: The integration of somatosensory information from the environment into the motor cortex to inform movement is essential for motor function. As motor deficits commonly persist into the chronic phase of stroke recovery, it is important to understand potential contributing factors to these deficits, as well as their relationship with motor function. To date the impact of chronic stroke on sensorimotor integration has not been thoroughly investigated. OBJECTIVES: The current study aimed to comprehensively examine the influence of chronic stroke on sensorimotor integration, and determine whether sensorimotor integration can be modified with an intervention. Further, it determined the relationship between neurophysiological measures of sensorimotor integration and motor deficits post-stroke. METHODS: Fourteen individuals with chronic stroke and twelve older healthy controls participated. Motor impairment and function were quantified in individuals with chronic stroke. Baseline neurophysiology was assessed using nerve-based measures (short- and long-latency afferent inhibition, afferent facilitation) and vibration-based measures of sensorimotor integration, which paired vibration with single and paired-pulse TMS techniques. Neurophysiological assessment was performed before and after a vibration-based sensory training paradigm to assess changes within these circuits. RESULTS: Vibration-based, but not nerve-based measures of sensorimotor integration were different in individuals with chronic stroke, as compared to older healthy controls, suggesting that stroke differentially impacts integration of specific types of somatosensory information. Sensorimotor integration was behaviourally relevant in that it related to both motor function and impairment post-stroke. Finally, sensory training modulated sensorimotor integration in individuals with chronic stroke and controls. CONCLUSION: Sensorimotor integration is differentially impacted by chronic stroke based on the type of afferent feedback. However, both nerve-based and vibration-based measures relate to motor impairment and function in individuals with chronic stroke.


Subject(s)
Evoked Potentials, Motor/physiology , Evoked Potentials, Somatosensory/physiology , Movement Disorders , Stroke Rehabilitation/methods , Stroke/complications , Vibration/therapeutic use , Aged , Aged, 80 and over , Analysis of Variance , Chronic Disease , Electromyography , Female , Humans , Male , Median Nerve/physiology , Middle Aged , Movement Disorders/etiology , Movement Disorders/physiopathology , Movement Disorders/rehabilitation , Transcranial Magnetic Stimulation , Treatment Outcome
15.
J Cereb Blood Flow Metab ; 38(5): 823-834, 2018 05.
Article in English | MEDLINE | ID: mdl-28401788

ABSTRACT

Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.


Subject(s)
Diabetes Mellitus, Type 2/complications , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/pathology , Stroke/complications , Aged , Aged, 80 and over , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Energy Metabolism/physiology , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Oxidative Stress/physiology , Stroke/metabolism , Stroke/pathology
16.
Neural Plast ; 2016: 6797928, 2016.
Article in English | MEDLINE | ID: mdl-27127659

ABSTRACT

Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to "prime" M1 plasticity for enhanced motor skill learning in applied settings.


Subject(s)
Cerebellum/physiology , Evoked Potentials, Motor/physiology , Exercise/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Adult , Electric Stimulation , Female , Humans , Long-Term Potentiation/physiology , Male , Neural Inhibition/physiology , Transcranial Magnetic Stimulation , Young Adult
17.
Clin Neurophysiol ; 126(10): 1959-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25631612

ABSTRACT

OBJECTIVE: To examine the relationship of transcallosal pathway microstructure and transcallosal inhibition (TCI) with motor function and impairment in chronic stroke. METHODS: Diffusion-weighted magnetic resonance imaging and transcranial magnetic stimulation (TMS) data were collected from 24 participants with chronic stroke and 11 healthy older individuals. Post-stroke motor function (Wolf Motor Function Test) and level of motor impairment (Fugl-Meyer score) were evaluated. RESULTS: Fractional anisotropy (FA) of transcallosal tracts between prefrontal cortices and the mean amplitude decrease in muscle activity during the ipsilateral silent period evoked by TMS over the non-lesioned hemisphere (termed NL-iSPmean) were significantly associated with level of motor impairment and motor function after stroke (p<0.05). A regression model including age, post-stroke duration, lesion volume, lesioned corticospinal tract FA, transcallosal prefrontal tract FA and NL-iSPmean accounted for 84% of variance in motor impairment (p<0.01). Both transcallosal prefrontal tract FA (ΔR(2)=0.12, p=0.04) and NL-iSPmean (ΔR(2)=0.09, p=0.04) accounted for unique variance in motor impairment level. CONCLUSIONS: Prefrontal transcallosal tract microstructure and TCI are each uniquely associated with motor impairment in chronic stroke. SIGNIFICANCE: Utilizing a multi-modal approach to assess transcallosal pathways may improve our capacity to identify important neural substrates of motor impairment in the chronic phase of stroke.


Subject(s)
Corpus Callosum/pathology , Diffusion Magnetic Resonance Imaging/methods , Prefrontal Cortex/pathology , Stroke/diagnosis , Transcranial Magnetic Stimulation/methods , Aged , Aged, 80 and over , Chronic Disease , Corpus Callosum/metabolism , Female , Humans , Male , Middle Aged , Prefrontal Cortex/metabolism , Stroke/metabolism
18.
J Neurol Phys Ther ; 39(1): 43-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25522236

ABSTRACT

A wide array of neuroimaging technologies are now available that offer unprecedented opportunities to study the brain in health and disease. Each technology has associated strengths and weaknesses that need to be considered to maximize their utility, especially when used in combination. One imaging technology, electroencephalography (EEG), has been in use for more than 80 years, but as a result of recent technologic advancements EEG has received renewed interest as an inexpensive, noninvasive and versatile technique to evaluate neural activity in the brain. In part, this is due to new opportunities to combine EEG not only with other imaging modalities, but also with neurostimulation and robotics technologies. When used in combination, noninvasive brain stimulation and EEG can be used to study cause-and-effect relationships between interconnected brain regions providing new avenues to study brain function. Although many of these approaches are still in the developmental phase, there is substantial promise in their ability to deepen our understanding of brain function. The ability to capture the causal relationships between brain function and behavior in individuals with neurologic disorders or injury has important clinical implications for the development of novel biomarkers of recovery and response to therapeutic interventions. The goals of this paper are to provide an overview of the fundamental principles of EEG; discuss past, present, and future applications of EEG in the clinical management of stroke; and introduce the technique of combining EEG with a form of noninvasive brain stimulation, transcranial magnetic stimulation, as a powerful synergistic research paradigm to characterize brain function in both health and disease.Video Abstract available (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A87) for more insights from the authors.


Subject(s)
Brain/physiopathology , Electroencephalography , Stroke/physiopathology , Humans
19.
Exp Brain Res ; 233(3): 927-36, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25511167

ABSTRACT

Movement-related gating ensures that decreased somatosensory information from external stimulation reaches the cortex during movement when compared to resting levels; however, gating may be influenced by task-relevant manipulations, such that increased sensory information ascends to the cortex when information is relevant to goal-based actions. These task-relevancy effects are hypothesized to be controlled by a network involving the dorsolateral prefrontal cortex (DLPFC) based on this region's known role in selective attention, modulating the primary somatosensory cortex (S1). The purpose of the current study was first to verify task-relevancy influences on movement-related gating in the upper limb, and second to test the contribution of the DLPFC and the primary somatosensory cortex (S1) to these relevancy effects. Ten healthy participants received median nerve stimulation at the left wrist during three conditions: rest, task-irrelevant movement, and task-relevant movement. Cortical responses to median nerve stimulations were measured in the form of somatosensory evoked potentials (SEPs). The three conditions were collected on a baseline day and on two separate days following continuous theta-burst (cTBS), which transiently reduces cortical excitability, over either the contralateral S1 or DLPFC. Results demonstrated a significant interaction between stimulation and condition, with a priori contrasts revealing that cTBS over either S1 or DLPFC diminished the relevancy-based modulation of SEP amplitudes; however, the degree of this effect was different. These results indicate that DLPFC influences over S1 are involved in the facilitation of relevant sensory information during movement.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Movement/physiology , Prefrontal Cortex/physiology , Sensory Gating/physiology , Somatosensory Cortex/physiology , Adult , Attention/physiology , Electric Stimulation , Female , Humans , Male , Median Nerve/physiology , Young Adult
20.
J Neurol Phys Ther ; 38(3): 151-60, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23934017

ABSTRACT

BACKGROUND AND PURPOSE: Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. METHODS: A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. RESULTS: In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. DISCUSSION AND CONCLUSIONS: Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. VIDEO ABSTRACT AVAILABLE: (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.


Subject(s)
Diffusion Tensor Imaging/methods , Internal Capsule/pathology , Learning , Motor Skills/physiology , Neuroimaging/methods , Stroke Rehabilitation , Stroke/pathology , White Matter/ultrastructure , Aged , Anisotropy , Case-Control Studies , Chronic Disease , Female , Humans , Male , Middle Aged , Recovery of Function/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...