Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Hepatol Commun ; 3(11): 1544-1555, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31701076

ABSTRACT

Mutations in the liver glycogen phosphorylase (Pygl) gene are associated with the diagnosis of glycogen storage disease type VI (GSD-VI). To understand the pathogenesis of GSD-VI, we generated a mouse model with Pygl deficiency (Pygl -/-). Pygl -/- mice exhibit hepatomegaly, excessive hepatic glycogen accumulation, and low hepatic free glucose along with lower fasting blood glucose levels and elevated blood ketone bodies. Hepatic glycogen accumulation in Pygl -/- mice increases with age. Masson's trichrome and picrosirius red staining revealed minimal to mild collagen deposition in periportal, subcapsular, and/or perisinusoidal areas in the livers of old Pygl -/- mice (>40 weeks). Consistently, immunohistochemical analysis showed the number of cells positive for alpha smooth muscle actin (α-SMA), a marker of activated hepatic stellate cells, was increased in the livers of old Pygl -/- mice compared with those of age-matched wild-type (WT) mice. Furthermore, old Pygl -/- mice had inflammatory infiltrates associated with hepatic vessels in their livers along with up-regulated hepatic messenger RNA levels of C-C chemokine ligand 5 (Ccl5/Rantes) and monocyte chemoattractant protein 1 (Mcp-1), indicating inflammation, while age-matched WT mice did not. Serum levels of aspartate aminotransferase and alanine aminotransferase were elevated in old Pygl -/- mice, indicating liver damage. Conclusion: Pygl deficiency results in progressive accumulation of hepatic glycogen with age and liver damage, inflammation, and collagen deposition, which can increase the risk of liver fibrosis. Collectively, the Pygl-deficient mouse recapitulates clinical features in patients with GSD-VI and provides a model to elucidate the mechanisms underlying hepatic complications associated with defective glycogen metabolism.

2.
Genet Med ; 21(4): 772-789, 2019 04.
Article in English | MEDLINE | ID: mdl-30659246

ABSTRACT

PURPOSE: Glycogen storage disease (GSD) types VI and IX are rare diseases of variable clinical severity affecting primarily the liver. GSD VI is caused by deficient activity of hepatic glycogen phosphorylase, an enzyme encoded by the PYGL gene. GSD IX is caused by deficient activity of phosphorylase kinase (PhK), the enzyme subunits of which are encoded by various genes: ɑ (PHKA1, PHKA2), ß (PHKB), É£ (PHKG1, PHKG2), and δ (CALM1, CALM2, CALM3). Glycogen storage disease types VI and IX have a wide spectrum of clinical manifestations and often cannot be distinguished from each other, or from other liver GSDs, on clinical presentation alone. Individuals with GSDs VI and IX can present with hepatomegaly with elevated serum transaminases, ketotic hypoglycemia, hyperlipidemia, and poor growth. This guideline for the management of GSDs VI and IX was developed as an educational resource for health-care providers to facilitate prompt and accurate diagnosis and appropriate management of patients. METHODS: A national group of experts in various aspects of GSDs VI and IX met to review the limited evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. Evidence bases for these rare disorders are largely based on expert opinion, particularly when targeted therapeutics that have to clear the US Food and Drug Administration (FDA) remain unavailable. RESULTS: This management guideline specifically addresses evaluation and diagnosis across multiple organ systems involved in GSDs VI and IX. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, and prenatal diagnosis are addressed. CONCLUSION: A guideline that will facilitate the accurate diagnosis and optimal management of patients with GSDs VI and IX was developed. This guideline will help health-care providers recognize patients with GSDs VI and IX, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It will also help identify gaps in scientific knowledge that exist today and suggest future studies.


Subject(s)
Genomics , Glycogen Storage Disease/genetics , Hypoglycemia/genetics , Phosphorylase Kinase/genetics , Disease Management , Genetics, Medical/trends , Glycogen/genetics , Glycogen/metabolism , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/epidemiology , Glycogen Storage Disease/therapy , Guidelines as Topic , Humans , Hypoglycemia/metabolism , Hypoglycemia/therapy , Liver/metabolism , Liver/pathology , Mutation , Phosphorylase Kinase/chemistry , United States/epidemiology
3.
J Inherit Metab Dis ; 41(6): 977-984, 2018 11.
Article in English | MEDLINE | ID: mdl-29802554

ABSTRACT

BACKGROUND: Viral mediated gene therapy has progressed after overcoming early failures, and gene therapy has now been approved for several conditions in Europe and the USA. Glycogen storage disease (GSD) type Ia, caused by a deficiency of glucose-6-phosphatase-α, has been viewed as an outstanding candidate for gene therapy. This follow-up report describes the long-term outcome for the naturally occurring GSD-Ia dogs treated with rAAV-GPE-hG6PC-mediated gene therapy. METHODS: A total of seven dogs were treated with rAAV-GPE-hG6PC-mediated gene therapy. The first four dogs were treated at birth, and three dogs were treated between 2 and 6 months of age to assess the efficacy and safety in animals with mature livers. Blood and urine samples, radiographic studies, histological evaluation, and biodistribution were assessed. RESULTS: Gene therapy improved survival in the GSD-Ia dogs. With treatment, the biochemical studies normalized for the duration of the study (up to 7 years). None of the rAAV-GPE-hG6PC-treated dogs had focal hepatic lesions or renal abnormalities. Dogs treated at birth required a second dose of rAAV after 2-4 months; gene therapy after hepatic maturation resulted in improved efficacy after a single dose. CONCLUSION: rAAV-GPE-hG6PC treatment in GSD-Ia dogs was found to be safe and efficacious. GSD-Ia is an attractive target for human gene therapy since it is a monogenic disorder with limited tissue involvement. Blood glucose and lactate monitoring can be used to assess effectiveness and as a biomarker of success. GSD-Ia can also serve as a model for other hepatic monogenic disorders.


Subject(s)
Genetic Therapy/methods , Glycogen Storage Disease Type I/therapy , Animals , Blood Glucose/metabolism , Dependovirus/genetics , Disease Models, Animal , Dogs , Europe , Genetic Vectors , Glucose-6-Phosphatase/genetics , Hypoglycemia/genetics , Hypoglycemia/metabolism , Kidney/metabolism , Liver/metabolism
4.
J Inherit Metab Dis ; 40(5): 703-708, 2017 09.
Article in English | MEDLINE | ID: mdl-28612263

ABSTRACT

The onset of microalbuminuria (MA) heralds the onset of glomerulopathy in patients with glycogen storage disease (GSD) type I. Unlike tubulopathy, which responds to improved metabolic control, glomerulopathy in GSD I is considered refractory to medical intervention, and it is thought to inexorably progress to overt proteinuria and renal failure. Recent reports of reduced microalbuminuria following strict adherence to therapy counter this view. In contrast to type Ia, little is known regarding the prevalence of kidney disease in GSD Ib, 0, III, VI, and IX. Subjects were evaluated with 24-h urine collections between 2005 and 2014 as part of a longitudinal study of the natural history of GSD. ACE inhibitor therapy (AIT) was commenced after documentation of microalbuminuria. Elevated urine albumin excretion was detected in 23 of 195 GSD Ia patients (11.7%) and six of 45 GSD Ib (13.3%). The median age of onset of microalbuminuria in GSD Ia was 24 years (range 9-56); in GSD Ib it was 25 years (range 20-38). Of 14 with GSD Ia who complied with dietary and AIT during the study period, microalbuminuria decreased in 11, in whom metabolic control improved. All 135 patients with the ketotic forms of GSD (0, III, VI and IX) consistently had normal microalbumin excretion. Strict adherence to dietary therapy and maintenance of optimal metabolic control is necessary to halt the progression of GSD Ia glomerulopathy in patients treated with AIT. With optimal care, protein excretion can be reduced and even normalize.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Glycogen Storage Disease/complications , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Longitudinal Studies , Middle Aged , Retrospective Studies , Young Adult
6.
JIMD Rep ; 26: 85-90, 2016.
Article in English | MEDLINE | ID: mdl-26303612

ABSTRACT

BACKGROUND: Glycogen storage disease type I (GSD I) causes severe hypoglycemia during periods of fasting since both glycogenolysis and gluconeogenesis are impaired. Primary treatment in North America consists of cornstarch therapy every 3-4 h. Waxy maize extended release cornstarch was introduced for maintaining overnight glucose concentrations, but no studies have assessed long-term safety and efficacy of the product. OBJECTIVE: To demonstrate the safety and efficacy of modified cornstarch in GSD I. DESIGN: An open-label overnight trial of extended release cornstarch was performed. Subjects with a successful trial (optimal metabolic control 2 or more hours longer than with traditional cornstarch) were given the option of continuing into the chronic observational phase. Subjects were assessed biochemically at baseline and after 12 months. RESULTS: Of the 106 subjects (93 GSD Ia/13 GSD Ib), efficacy was demonstrated in 82 patients (88%) with GSD Ia and 10 patients (77%) with GSD Ib. The success rate for extending fasting was 95% for females and 78% for males. Of the patients who entered the longitudinal phase, long-term data are available for 44 subjects. Mean duration of fasting on traditional cornstarch prior to study for the cohort was 4.1 and 7.8 h on the extended release cornstarch (P < 0.001). All laboratory markers of metabolic control have remained stable in the chronically treated patients. CONCLUSION: Extended release cornstarch appears to improve the quality of life of patients with GSD I without sacrificing metabolic control. Avoiding the overnight dose of cornstarch should enhance safety in this population.

7.
JIMD Rep ; 24: 123-8, 2015.
Article in English | MEDLINE | ID: mdl-26093626

ABSTRACT

Most patients with glycogen storage disease (GSD) type Ib show features related to inflammatory bowel disease (IBD). The development of IBD seems to be associated with the defect of neutrophil function in GSD Ib. Patients with GSD Ia were not recognized to have similar gastrointestinal complaints until recently and are not associated with a neutrophil defect. Fifty consecutive GSD Ia inpatients over the age of 2 years without a diagnosis of IBD were screened using serologic and genetic markers via the Prometheus IBD sgi Diagnostic test. Eleven patients were tested positive for IBD (22%), with five fitting the pattern for Crohn's disease, five for ulcerative colitis, and one with nonspecific IBD. Only 2 out of the 11 patients had any gastrointestinal complaints. No pattern could be distinguished from individual inflammatory markers, genetics, inflammation antibodies, age, complications, or metabolic control. Of note, 9 out of 11 patients testing positive were female. Patients with GSD Ia were found to have a higher rate of serologically indicated IBD when compared with the general population. While these subjects will need to be followed to determine if these serologic markers correlate with clinical disease, this study supports that IBD may be more common in the GSD Ia population. Further studies are warranted to explain the relationship between IBD and GSD I since it may provide clues regarding the pathogenesis of IBD development in the general population.

8.
JIMD Rep ; 19: 23-9, 2015.
Article in English | MEDLINE | ID: mdl-25665833

ABSTRACT

Glycogen storage disease (GSD) is an inherited disorder that requires a complex medical regimen to maintain appropriate metabolic control. Previous research has suggested the disease is associated with decreased quality of life, and clinical experience suggests that patients are at risk for disordered eating behaviors that may significantly compromise their health. The current study assessed eating attitudes, eating disorder symptoms, and body image among 64 patients with GSD ranging from 7-52 years old (M = 18.5 years old). About half the participants were male (n = 33, 51.6%). Most participants were diagnosed with GSD Type I (n = 52, 81.3%). Quantitative and qualitative analyses were utilized. Results indicated that 14.8% of children and 11.1% of adolescents/adults with GSD met the clinical cutoff for dysfunctional attitudes toward eating, suggesting high likelihood for presence of an eating disorder. However, traditional eating disorder symptoms (e.g., binging, purging, fasting, etc.) were less prevalent in the GSD sample compared to population norms (t = -6.45, p < 0.001). Body esteem was generally lower for both children and adolescents/adults with GSD compared to population norms. These results were consistent with interview responses indicating that GSD patients experience negative feedback from peers regarding their bodies, especially during childhood and adolescence. However, they reported growing acceptance of their bodies with age and reported less negative attitudes and behaviors. Assessing mental health, including symptoms of disordered eating and low body esteem, among individuals with GSD should be an important component of clinical care.

9.
J Inherit Metab Dis ; 38(3): 489-93, 2015 May.
Article in English | MEDLINE | ID: mdl-25070466

ABSTRACT

INTRODUCTION: Ketone formation is a normal response when hypoglycemia occurs. Since the majority of children with recurrent hypoglycemia cannot be diagnosed with a known endocrine or metabolic disorder on a critical sample, ketotic hypoglycemia has been described as the most common cause of low blood glucose concentrations in children. Critical samples, however, will miss the ketotic forms of glycogen storage disease (GSD), which present with elevated ketones, hypoglycemia, and normal hormonal concentrations. RESULTS: A total of 164 children (96 boys, 68 girls) were enrolled in the study. Prediction of pathogenicity of DNA changes using computer modeling confirmed pathology in 20 individuals [four GSD 0, two GSD VI, 12 GSD IX alpha, one GSD IX beta, one GSD IX gamma] (12%). Boys were most likely to have changes in the PHKA2 gene, consistent with GSD IX alpha, an X-linked disorder. CONCLUSIONS: Mutations in genes involved in glycogen synthesis and degradation were commonly found in children with idiopathic ketotic hypoglycemia. GSD IX is likely an unappreciated cause of ketotic hypoglycemia in children, while GSD 0 and VI are relatively uncommon. GSD IX alpha should particularly be considered in boys with unexplained hypoglycemia.


Subject(s)
Glycogen Storage Disease/genetics , Hypoglycemia/genetics , Ketosis/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Sex Factors
10.
JIMD Rep ; 18: 23-32, 2015.
Article in English | MEDLINE | ID: mdl-25308557

ABSTRACT

Hepatocellular adenomas (HCAs) are a common complication in patients with glycogen storage disease type I (GSD I). In this series, we report regression of HCAs in a cohort of patients who achieved metabolic control with strict dietary therapy. A retrospective review of the clinical records for all patients with GSD I was performed at our institution. All available imaging studies were reviewed in patients with reported regression of HCAs in the medical record. The charts of 163 patients with GSD Ia and 42 patients with GSD Ib were reviewed, and HCAs were documented in 47 subjects (43 Ia/4 Ib). After review of all available imaging studies, eight patients met criteria of being followed with both magnetic resonance imaging and ultrasound and were found to show evidence of regression of HCAs. In these individuals, regression of the HCAs occurred once metabolic control was obtained, as determined by decreasing levels of serum triglyceride levels. The average triglyceride level in all patients prior to regression of HCAs was 753 mg/dL (SD ± 293). The average serum triglyceride level in all patients at the time of regression of HCAs was 340 mg/dL (SD ± 164). These findings suggest that strict dietary therapy may cause regression of HCAs. If HCAs are documented in a patient with suboptimal metabolic control, intensive medical therapy may be an alternative to surgical intervention in some individuals.

11.
Pediatr Dent ; 28(5): 410-4, 2006.
Article in English | MEDLINE | ID: mdl-17036705

ABSTRACT

PURPOSE: This study assessed the anti-calculus benefit of Crest Dual Action Whitening Toothpaste in gastrostomy (GT) children compared to a control anti-caries dentifrice. METHODS: A double-blind randomized crossover design was used to compare the two dentifrices. A convenience sample of 24 GT subjects, 3-12 years old, was given a consensus baseline Volpe-Manhold Index calculus score by 2 trained examiners, followed by a dental prophylaxis to remove all calculus. Each child was randomly assigned to either study or control dentifrice groups. Caregivers brushed subjects' teeth twice daily with the unlabelled dentifrice for at least 45 seconds. Calculus was scored at 8 weeks (+/- 1 week) by the same investigators. Subjects then had a prophylaxis and received the alternative dentifrice. Subjects returned 8 weeks (+/- 1 week) later for final calculus scoring. RESULTS: The study dentifrice significantly reduced supragingival calculus from baseline by 58% compared to control dentifrice (p<0.005 need exact p-value unless it is <.001; maybe it's reported in the paper). Calculus levels decreased by 68% over the study duration, irrespective of dentifrice. ANOVA found no significant differences in calculus scores based on gender, race, history of reflux, aspiration pneumonia, or oral intake of food. Calculus was significantly related to history of aspiration pneumonia (p<0.05 need exact p-value here). CONCLUSION: Crest Dual Action Whitening Toothpaste was effective and better than anti-caries control dentifrice in reducing calculus in GT children.


Subject(s)
Dental Calculus/prevention & control , Dentifrices/therapeutic use , Enteral Nutrition , Gastrostomy , Toothbrushing/methods , Caregivers , Child , Child, Preschool , Cross-Over Studies , Dental Calculus/classification , Dental Prophylaxis , Double-Blind Method , Female , Follow-Up Studies , Gastroesophageal Reflux/complications , Humans , Male , Phosphates/therapeutic use , Pneumonia, Aspiration/complications , Silicic Acid , Silicon Dioxide/therapeutic use , Sodium Fluoride/therapeutic use , Toothpastes/therapeutic use
12.
Hippocampus ; 15(2): 246-53, 2005.
Article in English | MEDLINE | ID: mdl-15476265

ABSTRACT

The present study investigated whether infusion of brain-derived neurotrophic factor (BDNF) could ameliorate stress-induced impairments in spatial learning and memory as well as hippocampal long-term potentiation (LTP) of rats. Chronic immobilization stress (2 h/day x 7 days) significantly impaired spatial performance in the Morris water maze, elevated plasma corticosterone, and attenuated LTP in hippocampal slices from these animals as compared with normal control subjects. BDNF was infused into the left hippocampus (0.5 mul/h) for 14 days, beginning 7 days before the stress exposure. The BDNF group was protected from the deleterious effects of stress and performed at a level indistinguishable from normal control animals despite the presence of elevated corticosterone. BDNF alone and sham infusions had no effect on performance or LTP. These results demonstrate that spatial learning and memory, and LTP, a candidate neural substrate of learning and memory, are compromised during chronic stress, and may be protected by BDNF administration.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Hippocampus/drug effects , Hippocampus/physiology , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology , Animals , Corticosterone/blood , Electrophysiology , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Memory/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Rats , Rats, Long-Evans , Restraint, Physical , Space Perception/drug effects , Space Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...