Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Infect Disord Drug Targets ; 12(5): 327-31, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23017159

ABSTRACT

DNA polymerases pol IIIC and dnaE [i.e. pol IIIE] are essential for replicative DNA synthesis in low G:C Gram-positive eubacteria. Therefore, they have strong potential as targets for development of Gram-positive-selective antibacterial agents. This work has sought to extend to dnaE the recent discovery of antimicrobial agents based on pol IIIC-specific dGTP analogs. Compound 324C, a member of the same dGTP analog family, was found to be a potent and selective inhibitor of isolated dnaE in vitro. Surprisingly, 324C had no inhibitory effect in either intact Bacillus subtilis cells or in permeabilized cell preparations used to assess replicative DNA synthesis directly. It is proposed that the failure of 324C in the intact cell is a consequence of two major factors: (i) its template-dependent base pairing mechanism, and (ii) a specific subordinate role which dnaE apparently plays to pol IIIC. To generate an effective dnaE-selective inhibitor of replicative DNA synthesis in Gram-positive bacteria, it will likely be necessary to develop a molecule that attacks the enzyme's active site directly, without binding to template DNA.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Polymerase III/metabolism , Gram-Positive Bacteria/drug effects , Guanine/analogs & derivatives , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , DNA Replication/drug effects , DNA, Bacterial/drug effects , Drug Design , Gram-Positive Bacteria/enzymology , Guanine/pharmacology , Molecular Targeted Therapy
2.
Antimicrob Agents Chemother ; 56(3): 1624-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22203600

ABSTRACT

N(2)-(3,4-Dichlorobenzyl)-7-(2-[1-morpholinyl]ethyl)guanine (MorE-DCBG, 362E) is a synthetic purine that selectively inhibits the replication-specific DNA polymerase of Clostridium difficile. MorE-DCBG and its analogs strongly inhibited the growth of a wide variety of C. difficile strains. When administered orally in a hamster model of C. difficile-specific colitis, 362E was as effective as oral vancomycin, the current agent of choice for treating severe forms of the human disease.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Morpholines/administration & dosage , Nucleic Acid Synthesis Inhibitors , Purines/administration & dosage , Administration, Oral , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/therapeutic use , Clostridioides difficile/physiology , Cricetinae , DNA-Directed DNA Polymerase/metabolism , Disease Models, Animal , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/mortality , Female , Humans , Morpholines/chemical synthesis , Morpholines/therapeutic use , Purines/chemical synthesis , Purines/therapeutic use , Vancomycin/administration & dosage , Vancomycin/therapeutic use
3.
Bioorg Med Chem Lett ; 21(14): 4197-202, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21684746

ABSTRACT

Several 2-anilino- and 2-benzylamino-3-deaza-6-oxopurines [3-deazaguanines] and selected 8-methyl and 8-aza analogs have been synthesized. 7-Substituted N(2)-(3-ethyl-4-methylphenyl)-3-deazaguanines were potent and selective inhibitors of Gram+ bacterial DNA polymerase (pol) IIIC, and 7-substituted N(2)-(3,4-dichlorobenzyl)-3-deazaguanines were potent inhibitors of both pol IIIC and pol IIIE from Gram+ bacteria, but weakly inhibited pol IIIE from Gram- bacteria. Potent enzyme inhibitors in both classes inhibited the growth of Gram+ bacteria (MICs 2.5-10µg/ml), and were inactive against the Gram- organism Escherichia coli. Several derivatives had moderate protective activity in Staphylococcus aureus-infected mice.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , DNA Polymerase III/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Guanine/analogs & derivatives , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , DNA Polymerase III/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Escherichia coli/drug effects , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/enzymology , Guanine/chemistry , Guanine/pharmacology , Guanine/therapeutic use , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy
4.
Antimicrob Agents Chemother ; 51(1): 119-27, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17074800

ABSTRACT

The anilinouracils (AUs) such as 6-(3-ethyl-4-methylanilino)uracil (EMAU) are a novel class of gram-positive, selective, bactericidal antibacterials which inhibit pol IIIC, the gram-positive-specific replicative DNA polymerase. We have linked various fluoroquinolones (FQs) to the N-3 position of EMAU to generate a variety of AU-FQ "hybrids" offering the potential for targeting two distinct steps in DNA replication. In this study, the properties of a hybrid, "251D," were compared with those of representative AUs and FQs in a variety of in vitro assays, including pol IIIC and topoisomerase/gyrase enzyme assays, antibacterial, bactericidal, and mammalian cytotoxicity assays. Compound 251D potently inhibited pol IIIC and topoisomerase/gyrase, displayed gram-positive antibacterial potency at least 15 times that of the corresponding AU compound, and as expected, acted selectively on bacterial DNA synthesis. Compound 251D was active against a broad panel of antibiotic-resistant gram-positive pathogens as well as several gram-negative organisms and was also active against both AU- and FQ-resistant gram-positive organisms, demonstrating its capacity for attacking both of its potential targets in the bacterium. 251D also was bactericidal for gram-positive organisms and lacked toxicity in vitro. Although we obtained strains of Staphylococcus aureus resistant to the individual parent compounds, spontaneous resistance to 251D was not observed. We obtained 251D resistance in multiple-passage experiments, but resistance developed at a pace comparable to those for the parent compounds. This class of AU-FQ hybrids provides a promising new pharmacophore with an unusual dual mechanism of action and potent activity against antibiotic-sensitive and -resistant gram-positive pathogens.


Subject(s)
Aniline Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Gram-Positive Bacteria/drug effects , Aniline Compounds/chemistry , Anti-Bacterial Agents/chemistry , Bacillus/drug effects , Cell Line , Cell Survival/drug effects , DNA Polymerase III/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Resistance, Bacterial , Enterococcus/drug effects , Fluoroquinolones/chemistry , Gram-Negative Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Microbial Viability/drug effects , Staphylococcus/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Topoisomerase II Inhibitors , Uracil/analogs & derivatives , Uracil/chemistry , Uracil/pharmacology
5.
J Med Chem ; 49(4): 1455-65, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480282

ABSTRACT

Novel Gram-positive (Gram+) antibacterial compounds consisting of a DNA polymerase IIIC (pol IIIC) inhibitor covalently connected to a topoisomerase/gyrase inhibitor are described. Specifically, 3-substituted 6-(3-ethyl-4-methylanilino)uracils (EMAUs) in which the 3-substituent is a fluoroquinolone moiety (FQ) connected by various linkers were synthesized. The resulting "AU-FQ" hybrid compounds were significantly more potent than the parent EMAU compounds as inhibitors of pol IIIC and were up to 64-fold more potent as antibacterials in vitro against Gram+ bacteria. The hybrids inhibited the FQ targets, topoisomerase IV and gyrase, with potencies similar to norfloxacin but 10-fold lower than newer agents, for example, ciprofloxacin and sparfloxacin. Representative hybrids protected mice from lethal Staphylococcus aureus infection after intravenous dosing, and one compound showed protective effect against several antibiotic-sensitive and -resistant Gram+ infections in mice. The AU-FQ hybrids are a promising new family of antibacterials for treatment of antibiotic-resistant Gram+ infections.


Subject(s)
Aniline Compounds/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , DNA Polymerase III/antagonists & inhibitors , Gram-Positive Bacteria/drug effects , Topoisomerase II Inhibitors , Uracil/analogs & derivatives , Uracil/chemical synthesis , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Male , Mice , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Toxicity Tests, Acute , Uracil/pharmacokinetics , Uracil/pharmacology
6.
J Med Chem ; 48(22): 7063-74, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16250666

ABSTRACT

Numerous 3-substituted-6-(3-ethyl-4-methylanilino)uracils (EMAU) have been synthesized and screened for their capacity to inhibit the replication-specific bacterial DNA polymerase IIIC (pol IIIC) and the growth of Gram+ bacteria in culture. Direct alkylation of 2-methoxy-6-amino-4-pyrimidone produced the N3-substituted derivatives, which were separated from the byproduct 4-alkoxy analogues. The N3-substituted derivatives were heated with a mixture of 3-ethyl-4-methylaniline and its hydrochloride to effect displacement of the 6-amino group and simultaneous demethylation of the 2-methoxy group to yield target compounds in good yields. Certain intermediates, e.g. the 3-(iodoalkyl) compounds, were converted to a variety of (3-substituted-alkyl)-EMAUs by displacement. Most compounds were potent competitive inhibitors of pol IIIC (K(i)s 0.02-0.5 microM), and those with neutral, moderately polar 3-substituents had potent antibacterial activity against Gram+ organisms in culture (MICs 0.125-10 microg/mL). Several compounds protected mice from lethal intraperitoneal (ip) infections with S. aureus (Smith) when given by the ip route. A water soluble derivative, 3-(4-morpholinylbutyl)-EMAU hydrochloride, given subcutaneously, prolonged the life of infected mice in a dose dependent manner.


Subject(s)
Aniline Compounds/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , DNA Polymerase III/antagonists & inhibitors , Gram-Positive Bacteria/drug effects , Uracil/analogs & derivatives , Uracil/chemical synthesis , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Structure-Activity Relationship , Uracil/chemistry , Uracil/pharmacology
8.
J Med Chem ; 46(13): 2731-9, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12801236

ABSTRACT

Certain substituted 6-anilinouracils are potent and selective inhibitors of Gram+ bacterial DNA polymerase IIIC (pol IIIC). In addition, analogues with 3-substituents in the uracil ring have potent antibacterial activity against Gram+ organisms in culture. In an attempt to find optimal anilino substituents for pol IIIC binding and optimal 3-substituents for antibacterial activity, we have prepared several series of 3-substituted-6-aminouracils and assayed their activity against pol IIIC from Bacillus subtilis and a panel of Gram+ and Gram- bacteria in culture. The 6-(3-ethyl-4-methylanilino) group and closely related substituent patterns maximized pol IIIC inhibition potency. Among a series of 3-(substituted-butyl)-6-(3-ethyl-4-methylanilino)uracils, basic amino substituents increased pol IIIC inhibition, but decreased antibacterial activity. The most potent antibacterials were simple hydroxybutyl and methoxybutyl derivatives, and hydrophobically substituted piperidinylbutyl derivatives.


Subject(s)
Aniline Compounds/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , DNA Polymerase III/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Gram-Positive Bacteria/drug effects , Uracil/analogs & derivatives , Uracil/chemical synthesis , Aniline Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Structure-Activity Relationship , Uracil/pharmacology
9.
Protein Expr Purif ; 27(1): 90-7, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12509989

ABSTRACT

Enterococcus faecalis (Ef) dnaE and polC, the respective genes encoding the DNA replication-specific DNA polymerase III E and DNA polymerase III C, were cloned and engineered for expression in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Each gene expressed a catalytically active DNA polymerase of the expected molecular weight. The recombinant polymerases were purified and each was characterized with respect to catalytic properties, inhibitor sensitivity, and recognition by specific antibody raised against the corresponding DNA polymerase III of the model Gram-positive (Gr(+)) organism, Bacillus subtilis (Bs). In conclusion, the properties of each Enterococcus polymerase enzymes were similar to those of the respective B. subtilis enzymes.


Subject(s)
Bacterial Proteins , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA-Directed DNA Polymerase/genetics , Enterococcus faecalis/enzymology , Genes, Bacterial/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Polymerase III/chemistry , DNA Polymerase III/isolation & purification , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/isolation & purification , DNA-Directed DNA Polymerase/metabolism , Enterococcus faecalis/genetics , Enzyme Inhibitors/pharmacology , Escherichia coli , Gene Expression , Guanosine Triphosphate/analogs & derivatives , Guanosine Triphosphate/pharmacology , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Analysis, DNA
10.
J Bacteriol ; 184(14): 3834-8, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12081953

ABSTRACT

dnaE, the gene encoding one of the two replication-specific DNA polymerases (Pols) of low-GC-content gram-positive bacteria (E. Dervyn et al., Science 294:1716-1719, 2001; R. Inoue et al., Mol. Genet. Genomics 266:564-571, 2001), was cloned from Bacillus subtilis, a model low-GC gram-positive organism. The gene was overexpressed in Escherichia coli. The purified recombinant product displayed inhibitor responses and physical, catalytic, and antigenic properties indistinguishable from those of the low-GC gram-positive-organism-specific enzyme previously named DNA Pol II after the polB-encoded DNA Pol II of E. coli. Whereas a polB-like gene is absent from low-GC gram-positive genomes and whereas the low-GC gram-positive DNA Pol II strongly conserves a dnaE-like, Pol III primary structure, it is proposed that it be renamed DNA polymerase III E (Pol III E) to accurately reflect its replicative function and its origin from dnaE. It is also proposed that DNA Pol III, the other replication-specific Pol of low-GC gram-positive organisms, be renamed DNA polymerase III C (Pol III C) to denote its origin from polC. By this revised nomenclature, the DNA Pols that are expressed constitutively in low-GC gram-positive bacteria would include DNA Pol I, the dispensable repair enzyme encoded by polA, and the two essential, replication-specific enzymes Pol III C and Pol III E, encoded, respectively, by polC and dnaE.


Subject(s)
DNA Polymerase III/isolation & purification , DNA Polymerase II/isolation & purification , Gram-Positive Bacteria/enzymology , Catalysis , DNA Polymerase II/genetics , DNA Polymerase III/genetics , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL