Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Genet ; 10: 1035, 2019.
Article in English | MEDLINE | ID: mdl-31749834

ABSTRACT

Recent changes in soybean management like the adoption of transgenic crops and no-till farming, in addition to the expansion of cultivated areas into new virgin frontiers, are some of the hypotheses that can explain the rise of secondary pests, such as the Neotropical brown stink bug, Euschistus heros, in Brazil. To better access the risk of increased pests like E. heros and to determine probabilities for insecticide resistance spreading, it is necessary first to access the levels of the genetic diversity, how the genetic diversity is distributed, and how natural selection is acting upon the natural variation. Using the genotyping by sequencing (GBS) technique, we generated ~60,000 single-nucleotide polymorphisms (SNPs) distributed across the E. heros genome to answer some of those questions. The SNP data was used to investigate the pattern of genetic structure, hybridization and natural selection of this emerging pest. We found that E. heros populations presented similar levels of genetic diversity with slightly higher values at several central locations in Brazil. Our results also showed strong genetic structure separating northern and southern Brazilian regions (FST = 0.22; p-value = 0.000) with a very distinct hybrid zone at the central region. The analyses also suggest the possibility that GABA channels and odorant receptors might play a role in the process of natural selection. At least one marker was associated with soybean and beans crops, but no association between allele frequency and cotton was found. We discuss the implications of these findings in the management of emerging pests in agriculture, particularly in the context of large areas of monoculture such as soybean and cotton.

2.
Sci Rep ; 9(1): 14480, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597944

ABSTRACT

Unravelling the details of range expansion and ecological dominance shifts of insect pests has been challenging due to the lack of basic knowledge about population structure, gene flow, and most importantly, how natural selection is affecting the adaptive process. Piezodous guildinii is an emerging pest of soybean in the southern region of the United States, and increasingly important in Brazil in recent years. However, the reasons P. guildinii is gradually becoming more of a problem are questions still mostly unanswered. Here, we have genotyped P. guildinii samples and discovered 1,337 loci containing 4,083 variant sites SNPs that were used to estimate genetic structure and to identify gene candidates under natural selection. Our results revealed the existence of a significant genetic structure separating populations according to their broad geographic origin, i.e., U.S. and Brazil, supported by AMOVA (FGT = 0.26), STRUCTURE, PCA, and FST analyses. High levels of gene flow or coancestry within groups (i.e., within countries) can be inferred from the data, and no spatial pattern was apparent at the finer scale in Brazil. Samples from different seasons show more heterogeneous compositions suggesting mixed ancestry and a more complex dynamic. Lastly, we were able to detect and successfully annotated 123 GBS loci (10.5%) under positive selection. The gene ontology (GO) analysis implicated candidate genes under selection with genome reorganization, neuropeptides, and energy mobilization. We discuss how these findings could be related to recent outbreaks and suggest how new efforts directed to better understand P. guildinii population dynamics.


Subject(s)
Heteroptera/genetics , Animals , Brazil , Gene Ontology , Genetic Variation , Genetics, Population , Genome, Insect , Genotype , Heteroptera/classification , Heteroptera/pathogenicity , Models, Genetic , Polymorphism, Single Nucleotide , Population Dynamics/trends , Seasons , Selection, Genetic , Glycine max , United States
3.
Nat Commun ; 8(1): 1550, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29142254

ABSTRACT

Highly aggressive Africanized honeybees (AHB) invaded Puerto Rico (PR) in 1994, displacing gentle European honeybees (EHB) in many locations. Gentle AHB (gAHB), unknown anywhere else in the world, subsequently evolved on the island within a few generations. Here we sequence whole genomes from gAHB and EHB populations, as well as a North American AHB population, a likely source of the founder AHB on PR. We show that gAHB retains high levels of genetic diversity after evolution of gentle behaviour, despite selection on standing variation. We observe multiple genomic loci with significant signatures of selection. Rapid evolution during colonization of novel habitats can generate major changes to characteristics such as morphological or colouration traits, usually controlled by one or more major genetic loci. Here we describe a soft selective sweep, acting at multiple loci across the genome, that occurred during, and may have mediated, the rapid evolution of a behavioural trait.


Subject(s)
Bees/genetics , Genetic Variation , Genome, Insect/genetics , Selection, Genetic , Africa , Animals , Bees/classification , Bees/physiology , Evolution, Molecular , Genetics, Population , Haplotypes , Introduced Species , Phylogeny , Puerto Rico
SELECTION OF CITATIONS
SEARCH DETAIL