Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37298696

ABSTRACT

This study analyzed microarray data of right ventricular (RV) tissue from rats exposed to pulmonary embolism to understand the initial dynamic transcriptional response to mechanical stress and compare it with experimental pulmonary hypertension (PH) models. The dataset included samples harvested from 55 rats at 11 different time points or RV locations. We performed principal component analysis (PCA) to explore clusters based on spatiotemporal gene expression. Relevant pathways were identified from fast gene set enrichment analysis using PCA coefficients. The RV transcriptomic signature was measured over several time points, ranging from hours to weeks after an acute increase in mechanical stress, and was found to be highly dependent on the severity of the initial insult. Pathways enriched in the RV outflow tracts of rats at 6 weeks after severe PE share many commonalities with experimental PH models, but the transcriptomic signature at the RV apex resembles control tissue. The severity of the initial pressure overload determines the trajectory of the transcriptomic response independent of the final afterload, but this depends on the location where the tissue is biopsied. Chronic RV pressure overload due to PH appears to progress toward similar transcriptomic endpoints.


Subject(s)
Hypertension, Pulmonary , Pulmonary Embolism , Rats , Animals , Heart Ventricles/metabolism , Transcriptome , Gene Expression Profiling , Hypertension, Pulmonary/metabolism , Disease Models, Animal , Ventricular Remodeling
2.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36961489

ABSTRACT

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Animals , Cattle , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Proteomics , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Heart Ventricles , Disease Models, Animal , Hypoxia , Ventricular Remodeling , Ventricular Function, Right , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/complications
3.
Am J Respir Cell Mol Biol ; 69(1): 73-86, 2023 07.
Article in English | MEDLINE | ID: mdl-36944195

ABSTRACT

Hypoxia-inducible factor (HIF) has received much attention as a potential pulmonary hypertension (PH) treatment target because inhibition of HIF reduces the severity of established PH in rodent models. However, the limitations of small-animal models of PH in predicting the therapeutic effects of pharmacologic interventions in humans PH are well known. Therefore, we sought to interrogate the role of HIFs in driving the activated phenotype of PH cells from human and bovine vessels. We first established that pulmonary arteries (PAs) from human and bovine PH lungs exhibit markedly increased expression of direct HIF target genes (CA9, GLUT1, and NDRG1), as well as cytokines/chemokines (CCL2, CSF2, CXCL12, and IL6), growth factors (FGF1, FGF2, PDGFb, and TGFA), and apoptosis-resistance genes (BCL2, BCL2L1, and BIRC5). The expression of the genes found in the intact PAs was determined in endothelial cells, smooth muscle cells, and fibroblasts cultured from the PAs. The data showed that human and bovine pulmonary vascular fibroblasts from patients or animals with PH (termed PH-Fibs) were the cell type that exhibited the highest level and the most significant increases in the expression of cytokines/chemokines and growth factors. In addition, we found that human, but not bovine, PH-Fibs exhibit consistent misregulation of HIFα protein stability, reduced HIF1α protein hydroxylation, and increased expression of HIF target genes even in cells grown under normoxic conditions. However, whereas HIF inhibition reduced the expression of direct HIF target genes, it had no impact on other "persistently activated" genes. Thus, our study indicated that HIF inhibition alone is not sufficient to reverse the persistently activated phenotype of human and bovine PH-Fibs.


Subject(s)
Hypertension, Pulmonary , Animals , Humans , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Phenotype , Cytokines/metabolism , Pulmonary Artery/metabolism , Intercellular Signaling Peptides and Proteins , Hypoxia/complications , Fibroblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cells, Cultured
4.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L58-L68, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35608266

ABSTRACT

Few studies have examined lung interstitial macrophage (IM) molecular phenotypes after being exposed to hypoxia in vivo at the single-cell level, even though macrophages contribute to hypoxic pulmonary hypertension (PH). We aimed to determine IM diversity and its association with hypoxia-induced PH. We hypothesized that integrating single-cell RNA sequencing (scRNAseq) and binary hierarchal clustering (BHC) could resolve IM heterogeneity under normal homeostatic conditions and changes induced by hypoxia exposure. Cx3cr1GFP/+ reporter mice were exposed to normoxic conditions (∼21% [Formula: see text]) or exposed to 1 day (D1) or 7 days (D7) of hypoxia (∼10% [Formula: see text]). We used flow cytometry to isolate Cx3cr1+ IMs and the 10X Genomics platform for scRNAseq, Cell Ranger, Seurat, ClusterMap, monocle, ingenuity pathway analysis, and Fisher's exact test (q value < 0.05) for functional investigations. n = 374 (normoxia), n = 2,526 (D1), and n = 1,211 (D7) IMs were included in the analyses. We identified three normoxia-related cell types, five hypoxia-associated cell types that emerged at D1, and three that appeared at D7. We describe the existence of a putative resident trained innate IM, which is present in normoxia, transiently depleted at D1, and recovered after 7 days of sustained hypoxia. We also define a rare putative pathogenic population associated with transcripts implicated in PH development that emerges at D7. In closing, we describe the successful integration of BHC with scRNAseq to determine IM heterogeneity and its association with PH. These results shed light on how resident-trained innate IMs become more heterogeneous but ultimately accustomed to hypoxia.


Subject(s)
Hypertension, Pulmonary , Hypoxia , Animals , Cluster Analysis , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Lung/pathology , Macrophages/metabolism , Mice , Sequence Analysis, RNA
5.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: mdl-34499621

ABSTRACT

Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by complement-dependent, fibroblast-induced perivascular accumulation and proinflammatory activation of macrophages. We hypothesized that, in PH, nanoscale-sized small extracellular vesicles (sEVs), released by perivascular/adventitial fibroblasts, are critical mediators of complement-dependent proinflammatory activation of macrophages. Pulmonary adventitial fibroblasts were isolated from calves with severe PH (PH-Fibs) and age-matched controls (CO-Fibs). PH-Fibs exhibited increased secretion of sEVs, compared with CO-Fibs, and sEV biological activity was tested on mouse and bovine bone marrow-derived macrophages (BMDMs) and showed similar responses. Compared with sEVs derived from CO-Fibs, sEVs derived from PH-Fibs (PH-Fib-sEVs) induced augmented expression of proinflammatory cytokines/chemokines and metabolic genes in BMDMs. Pharmacological blockade of exosome release from PH-Fibs resulted in significant attenuation of proinflammatory activation of BMDMs. "Bottom-up" proteomic analyses revealed significant enrichment of complement and coagulation cascades in PH-Fib-sEVs, including augmented expression of the complement component C3. We therefore examined whether the PH-Fib-sEV-mediated proinflammatory activation of BMDMs was complement C3 dependent. Treatment of PH-Fibs with siC3-RNA significantly attenuated the capacity of PH-Fib-sEVs for proinflammatory activation of BMDMs. PH-Fib-sEVs mediated proglycolytic alterations and complement-dependent activation of macrophages toward a proinflammatory phenotype, as confirmed by metabolomic studies. Thus, fibroblast-released sEVs served as critical mediators of complement-induced perivascular/microenvironmental inflammation in PH.


Subject(s)
Cellular Reprogramming/genetics , Extracellular Vesicles/genetics , Fibroblasts/metabolism , Hypertension, Pulmonary/physiopathology , Macrophages/metabolism , Animals , Disease Models, Animal , Humans , Mice
6.
Front Physiol ; 12: 712583, 2021.
Article in English | MEDLINE | ID: mdl-34552503

ABSTRACT

Pulmonary hypertension (PH) is an incurable condition in humans; driven by pulmonary vascular remodeling partially mediated by epigenetic mechanisms; and leading to right ventricular hypertrophy, failure, and death. We hypothesized that targeting chromatin-modifying histone deacetylases may provide benefit. In this Brief Report we describe case comparison studies using the histone deacetylase inhibitor vorinostat (suberanilohydroxamic acid, 5 mg/kg/day for the first 5 study days) in an established model of severe neonatal bovine PH induced by 14 days of environmental hypoxia. Echocardiographic, hemodynamic, and pharmacokinetic data were obtained in hypoxia-exposed (one each, vorinostat-treated vs. untreated) and normoxic vorinostat-treated control animals (n = 2). Echocardiography detected PH changes by day 4 and severe PH over 14 days of continued hypoxic exposure. RV dysfunction at day 4 was less severe in vorinostat-treated compared to untreated hypoxic calves. Cardioprotective effects were partially maintained following cessation of treatment through the duration of hypoxic exposure, accompanied by hemodynamic evidence suggestive of reduced pulmonary vascular stiffening, and modulated expression of HDAC1 protein and genes involved in RV and pulmonary vascular remodeling and pathological RV hypertrophy. Control calves did not develop PH, nor show adverse cardiac or clinical effects. These results provide novel translation of epigenetic-directed therapy to a large animal severe PH model that recapitulates important features of human disease.

7.
Front Immunol ; 12: 640718, 2021.
Article in English | MEDLINE | ID: mdl-33868271

ABSTRACT

The recruitment and subsequent polarization of inflammatory monocytes/macrophages in the perivascular regions of pulmonary arteries is a key feature of pulmonary hypertension (PH). However, the mechanisms driving macrophage polarization within the adventitial microenvironment during PH progression remain unclear. We previously established that reciprocal interactions between fibroblasts and macrophages are essential in driving the activated phenotype of both cell types although the signals involved in these interactions remain undefined. We sought to test the hypothesis that adventitial fibroblasts produce a complex array of metabolites and proteins that coordinately direct metabolomic and transcriptomic re-programming of naïve macrophages to recapitulate the pathophysiologic phenotype observed in PH. Media conditioned by pulmonary artery adventitial fibroblasts isolated from pulmonary hypertensive (PH-CM) or age-matched control (CO-CM) calves were used to activate bone marrow derived macrophages. RNA-Seq and mass spectrometry-based metabolomics analyses were performed. Fibroblast conditioned medium from patients with idiopathic pulmonary arterial hypertension or controls were used to validate transcriptional findings. The microenvironment was targeted in vitro using a fibroblast-macrophage co-culture system and in vivo in a mouse model of hypoxia-induced PH. Both CO-CM and PH-CM actively, yet distinctly regulated macrophage transcriptomic and metabolomic profiles. Network integration revealed coordinated rewiring of pro-inflammatory and pro-remodeling gene regulation in concert with altered mitochondrial and intermediary metabolism in response to PH-CM. Pro-inflammation and metabolism are key regulators of macrophage phenotype in vitro, and are closely related to in vivo flow sorted lung interstitial/perivascular macrophages from hypoxic mice. Metabolic changes are accompanied by increased free NADH levels and increased expression of a metabolic sensor and transcriptional co-repressor, C-terminal binding protein 1 (CtBP1), a mechanism shared with adventitial PH-fibroblasts. Targeting the microenvironment created by both cell types with the CtBP1 inhibitor MTOB, inhibited macrophage pro-inflammatory and metabolic re-programming both in vitro and in vivo. In conclusion, coordinated transcriptional and metabolic reprogramming is a critical mechanism regulating macrophage polarization in response to the complex adventitial microenvironment in PH. Targeting the adventitial microenvironment can return activated macrophages toward quiescence and attenuate pathological remodeling that drives PH progression.


Subject(s)
Cellular Microenvironment/physiology , Hypertension, Pulmonary/physiopathology , Macrophage Activation/physiology , Macrophages, Alveolar/metabolism , Animals , Cattle , Cells, Cultured , Cellular Reprogramming/drug effects , Cellular Reprogramming/physiology , Coculture Techniques , Culture Media, Conditioned/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , Macrophages, Alveolar/drug effects , Metabolome , Mice , Mice, Inbred C57BL , Transcriptome
8.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33497359

ABSTRACT

Women with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17ß-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α-null or ER-ß-null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.


Subject(s)
Apelin/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Hypertension, Pulmonary/physiopathology , Ventricular Function, Right/physiology , Animals , Cardiotonic Agents/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Estrogen Receptor alpha/deficiency , Estrogen Receptor alpha/genetics , Female , Humans , Male , Mice , Mice, Knockout , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Rats , Rats, Mutant Strains
9.
Int J Mol Sci ; 21(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466553

ABSTRACT

Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.


Subject(s)
Hypertension, Pulmonary/metabolism , RNA-Binding Proteins/metabolism , Animals , Humans , Hypertension, Pulmonary/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
10.
J Mater Chem B ; 8(31): 6814-6826, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32343292

ABSTRACT

Fibrotic disorders account for over one third of mortalities worldwide. Despite great efforts to study the cellular and molecular processes underlying fibrosis, there are currently few effective therapies. Dual-stage polymerization reactions are an innovative tool for recreating heterogeneous increases in extracellular matrix (ECM) modulus, a hallmark of fibrotic diseases in vivo. Here, we present a clickable decellularized ECM (dECM) crosslinker incorporated into a dynamically responsive poly(ethylene glycol)-α-methacrylate (PEGαMA) hybrid-hydrogel to recreate ECM remodeling in vitro. An off-stoichiometry thiol-ene Michael addition between PEGαMA (8-arm, 10 kg mol-1) and the clickable dECM resulted in hydrogels with an elastic modulus of E = 3.6 ± 0.24 kPa, approximating healthy lung tissue (1-5 kPa). Next, residual αMA groups were reacted via a photo-initiated homopolymerization to increase modulus values to fibrotic levels (E = 13.4 ± 0.82 kPa) in situ. Hydrogels with increased elastic moduli, mimicking fibrotic ECM, induced a significant increase in the expression of myofibroblast transgenes. The proportion of primary fibroblasts from dual-reporter mouse lungs expressing collagen 1a1 and alpha-smooth muscle actin increased by approximately 60% when cultured on stiff and dynamically stiffened hybrid-hydrogels compared to soft. Likewise, fibroblasts expressed significantly increased levels of the collagen 1a1 transgene on stiff regions of spatially patterned hybrid-hydrogels compared to the soft areas. Collectively, these results indicate that hybrid-hydrogels are a new tool that can be implemented to spatiotemporally induce a phenotypic transition in primary murine fibroblasts in vitro.


Subject(s)
Biomimetics , Extracellular Matrix/metabolism , Hydrogels/chemistry , Tissue Engineering/methods , Chronic Disease , Elastic Modulus , Fibroblasts/pathology , Fibrosis , Humans , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry
11.
Eur Respir J ; 54(6)2019 12.
Article in English | MEDLINE | ID: mdl-31515405

ABSTRACT

Most published studies addressing the role of hypoxia inducible factors (HIFs) in hypoxia-induced pulmonary hypertension development employ models that may not recapitulate the clinical setting, including the use of animals with pre-existing lung/vascular defects secondary to embryonic HIF ablation or activation. Furthermore, critical questions including how and when HIF signalling contributes to hypoxia-induced pulmonary hypertension remain unanswered.Normal adult rodents in which global HIF1 or HIF2 was inhibited by inducible gene deletion or pharmacological inhibition (antisense oligonucleotides (ASO) and small molecule inhibitors) were exposed to short-term (4 days) or chronic (4-5 weeks) hypoxia. Haemodynamic studies were performed, the animals euthanised, and lungs and hearts obtained for pathological and transcriptomic analysis. Cell-type-specific HIF signals for pulmonary hypertension initiation were determined in normal pulmonary vascular cells in vitro and in mice (using cell-type-specific HIF deletion).Global Hif1a deletion in mice did not prevent hypoxia-induced pulmonary hypertension at 5 weeks. Mice with global Hif2a deletion did not survive long-term hypoxia. Partial Hif2a deletion or Hif2-ASO (but not Hif1-ASO) reduced vessel muscularisation, increases in pulmonary arterial pressures and right ventricular hypertrophy in mice exposed to 4-5 weeks of hypoxia. A small molecule HIF2 inhibitor (PT2567) significantly attenuated early events (monocyte recruitment and vascular cell proliferation) in rats exposed to 4 days of hypoxia, as well as vessel muscularisation, tenascin C accumulation and pulmonary hypertension development in rats exposed to 5 weeks of hypoxia. In vitro, HIF2 induced a distinct set of genes in normal human pulmonary vascular endothelial cells, mediating inflammation and proliferation of endothelial cells and smooth muscle cells. Endothelial Hif2a knockout prevented hypoxia-induced pulmonary hypertension in mice.Inhibition of HIF2 (but not HIF1) can provide a therapeutic approach to prevent the development of hypoxia-induced pulmonary hypertension. Future studies are needed to investigate the role of HIFs in pulmonary hypertension progression and reversal.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Female , Gene Expression Regulation , Hypertension, Pulmonary/pathology , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypoxia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Pulmonary Artery/cytology , Rats , Rats, Sprague-Dawley , Signal Transduction , Vascular Remodeling
12.
PLoS One ; 14(8): e0220573, 2019.
Article in English | MEDLINE | ID: mdl-31374110

ABSTRACT

RATIONALE: In virtually all models of heart failure, prognosis is determined by right ventricular (RV) function; thus, understanding the cellular mechanisms contributing to RV dysfunction is critical. Whole organ remodeling is associated with cell-specific changes, including cardiomyocyte dedifferentiation and activation of cardiac fibroblasts (Cfib) which in turn is linked to disorganization of cytoskeletal proteins and loss of sarcomeric structures. However, how these cellular changes contribute to RV function remains unknown. We've previously shown significant organ-level RV dysfunction in a large animal model of pulmonary hypertension (PH) which was not mirrored by reduced function of isolated cardiomyocytes. We hypothesized that factors produced by the endogenous Cfib contribute to global RV dysfunction by generating a heterogeneous cellular environment populated by dedifferentiated cells. OBJECTIVE: To determine the effect of Cfib conditioned media (CM) from the PH calf (PH-CM) on adult rat ventricular myocytes (ARVM) in culture. METHODS AND RESULTS: Brief exposure (<2 days) to PH-CM results in rapid, marked dedifferentiation of ARVM to a neonatal-like phenotype exhibiting spontaneous contractile behavior. Dedifferentiated cells maintain viability for over 30 days with continued expression of cardiomyocyte proteins including TnI and α-actinin yet exhibit myofibroblast characteristics including expression of α-smooth muscle actin. Using a bioinformatics approach to identify factor(s) that contribute to dedifferentiation, we found activation of the PH Cfib results in a unique transcriptome correlating with factors both in the secretome and with activated pathways in the dedifferentiated myocyte. Further, we identified upregulation of periostin in the Cfib and CM, and demonstrate that periostin is sufficient to drive cardiomyocyte dedifferentiation. CONCLUSIONS: These data suggest that paracrine factor(s) released by Cfib from the PH calf signal a phenotypic transformation in a population of cardiomyocytes that likely contributes to RV dysfunction. Therapies targeting this process, such as inhibition of periostin, have the potential to prevent RV dysfunction.


Subject(s)
Cell Dedifferentiation/physiology , Fibroblasts/metabolism , Heart Ventricles/metabolism , Hypertension, Pulmonary/metabolism , Myocytes, Cardiac/cytology , Ventricular Dysfunction, Right/metabolism , Animals , Cattle , Disease Models, Animal , Fibroblasts/cytology , Heart Ventricles/cytology , Myocytes, Cardiac/metabolism , Ventricular Function, Right/physiology , Ventricular Remodeling
13.
Pulm Circ ; 9(1): 2045894018796804, 2019.
Article in English | MEDLINE | ID: mdl-30124135

ABSTRACT

The obesity epidemic in developed societies has led to increased cardiovascular diseases including pulmonary hypertension associated with left heart disease (PH-LHD), the largest and fastest-growing class of PH. Similar to obese humans, PH and heart failure (HF) are increasingly recognized in North American fattened beef cattle. We hypothesized that PH and HF in fattened beef cattle are novel, phenotypically distinct manifestations of bovine PH arising from left ventricular (LV) dysfunction similar to obesity-related PH-LHD in humans. We conducted a semi-quantitative histopathological assessment of cardiopulmonary tissues obtained from fattened beef cattle suffering end-stage HF compared to asymptomatic cattle of equivalent age undergoing the same fattening regimens. In HF animals we observed significant LV fibrosis, abundant cardiac adipose depots, coronary artery injury, and pulmonary venous remodeling recapitulating human obesity-related PH-LHD. Additionally, striking muscularization, medial hypertrophy, adventitial fibrosis, and vasa vasorum hyperplasia in the pulmonary arterial circulation were associated with sequela of pathologic right ventricular (RV) remodeling suggesting combined pulmonary venous and arterial hypertension. The association between obesity, pathologic cardiopulmonary remodeling, and HF in fattened beef cattle appears to recapitulate the complex pathophysiology of obesity-associated PH-LHD in humans. This novel, naturally occurring, and large animal model may provide mechanistic and translational insights into human disease.

15.
Anesth Analg ; 122(5): 1280-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26974020

ABSTRACT

BACKGROUND: Pulmonary hypertension and resulting right ventricular (RV) dysfunction are associated with significant perioperative morbidity and mortality. Although echocardiography permits real-time, noninvasive assessment of RV function, objective and comparative measures are underdeveloped, and appropriate animal models to study their utility are lacking. Longitudinal strain analysis is a novel echocardiographic method to quantify RV performance. Herein, we hypothesized that peak RV longitudinal strain would worsen in a bovine model of pulmonary hypertension compared with control animals. METHODS: Newborn Holstein calves were randomly chosen for induction of pulmonary hypertension versus control conditions. Pulmonary hypertension was induced by exposing animals to 14 days of hypoxia (equivalent to 4570 m above sea level or 430 mm Hg barometric pressure). Control animals were kept at ambient pressure/normoxia. At the end of the intervention, transthoracic echocardiography was performed in awake calves. Longitudinal wall strain was analyzed from modified apical 4-chamber views focused on the RV. Comparisons between measurements in hypoxic versus nonhypoxic conditions were performed using Student t test for independent samples and unequal variances. RESULTS: After 14 days at normoxic versus hypoxic conditions, 15 calves were examined with echocardiography. Pulmonary hypertension was confirmed by right heart catheterization and associated with reduced RV systolic function. Mean systolic strain measurements were compared in normoxia-exposed animals (n = 8) and hypoxia-exposed animals (n = 7). Peak global systolic longitudinal RV strain after hypoxia worsened compared to normoxia (-10.5% vs -16.1%, P = 0.0031). Peak RV free wall strain also worsened after hypoxia compared to normoxia (-9.6% vs -17.3%, P = 0.0031). Findings from strain analysis were confirmed by measurement of tricuspid annular peak systolic excursion. CONCLUSIONS: Peak longitudinal RV strain detected worsened RV function in animals with hypoxia-induced pulmonary hypertension compared with control animals. This relationship was demonstrated in the transthoracic echocardiographic 4-chamber view independently for the RV free wall and for the combination of the free and septal walls. This innovative model of bovine pulmonary hypertension may prove useful to compare different monitoring technologies for the assessment of early events of RV dysfunction. Further studies linking novel RV imaging applications with mechanistic and therapeutic approaches are needed.


Subject(s)
Echocardiography, Doppler, Color , Hypertension, Pulmonary/diagnostic imaging , Myocardial Contraction , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right , Animals , Animals, Newborn , Biomechanical Phenomena , Cardiac Catheterization , Cattle , Disease Models, Animal , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypoxia/complications , Magnetic Resonance Imaging , Male , Predictive Value of Tests , Stress, Mechanical , Time Factors , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/physiopathology
16.
Curr Hypertens Rep ; 18(1): 4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26733189

ABSTRACT

Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.


Subject(s)
Hypertension, Pulmonary/physiopathology , Pulmonary Artery , Vascular Stiffness , Echocardiography , Hemodynamics , Humans
17.
Nat Commun ; 6: 6863, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25873470

ABSTRACT

High-altitude pulmonary hypertension (HAPH) has heritable features and is a major cause of death in cattle in the Rocky Mountains, USA. Although multiple genes are likely involved in the genesis of HAPH, to date no major gene variant has been identified. Using whole-exome sequencing, we report the high association of an EPAS1 (HIF2α) double variant in the oxygen degradation domain of EPAS1 in Angus cattle with HAPH, mean pulmonary artery pressure >50 mm Hg in two independent herds. Expression analysis shows upregulation of 26 of 27 HIF2α target genes in EPAS1 carriers with HAPH. Of interest, this variant appears to be prevalent in lowland cattle, in which 41% of a herd of 32 are carriers, but the variant may only have a phenotype when the animal is hypoxemic at altitude. The EPAS1 variant will be a tool to determine the cells and signalling pathways leading to HAPH.


Subject(s)
Altitude Sickness/veterinary , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle Diseases/genetics , Hypertension, Pulmonary/veterinary , Alleles , Altitude Sickness/genetics , Animals , Cattle , Female , Genetic Predisposition to Disease , Genetic Variation , Hypertension, Pulmonary/genetics , Male , Up-Regulation
18.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L158-67, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25416385

ABSTRACT

Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria.


Subject(s)
Cattle , Disease Models, Animal , Heart Ventricles/physiopathology , Hypertension, Pulmonary/pathology , Hypertrophy, Right Ventricular/physiopathology , Mitochondria/metabolism , Ventricular Dysfunction, Right/pathology , Animals , DNA Copy Number Variations , Electron Transport Complex I/metabolism , Glucose Transporter Type 4/biosynthesis , Heart Failure/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Male , Mitochondria/genetics , Phosphofructokinase-1/biosynthesis , Protein Kinase C/biosynthesis , Vascular Endothelial Growth Factor A/biosynthesis , Ventricular Function, Right
19.
Am J Physiol Heart Circ Physiol ; 304(2): H269-81, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23125215

ABSTRACT

Pulmonary hypertension (PH) results in pressure overload of the right ventricle (RV) of the heart, initiating pathological RV remodeling and ultimately leading to right heart failure. Substantial research indicates that signaling through the MAPK superfamily mediates pathological cardiac remodeling. These considerations led us to test the hypothesis that the regulatory protein MAPKKK-2 (MEKK2) contributes to RV hypertrophy in hypoxia-induced PH. Transgenic mice with global knockout of MEKK2 (MEKK2(-/-) mice) and age-matched wild-type (WT) mice were exposed to chronic hypobaric hypoxia (10% O(2), 6 wk) and compared with animals under normoxia. Exposure to chronic hypoxia induced PH in WT and MEKK2(-/-) mice. In response to PH, WT mice showed RV hypertrophy, demonstrated as increased ratio of RV weight to body weight, increased RV wall thickness at diastole, and increased cardiac myocyte size compared with normoxic control animals. In contrast, each of these measures of RV hypertrophy seen in WT mice after chronic hypoxia was attenuated in MEKK2(-/-) mice. Furthermore, chronic hypoxia elicited altered programs of hypertrophic and inflammatory gene expression consistent with pathological RV remodeling in WT mice; MEKK2 deletion selectively inhibited inflammatory gene expression compared with WT mice. The actions of MEKK2 were mediated in part through regulation of the abundance and phosphorylation of its effector, ERK5. In conclusion, signaling by MEKK2 contributes to RV hypertrophy and altered myocardial inflammatory gene expression in response to hypoxia-induced PH. Therapies targeting MEKK2 may protect the myocardium from hypertrophy and pathological remodeling in human PH.


Subject(s)
Heart Ventricles/enzymology , Hypertension, Pulmonary/etiology , Hypertrophy, Right Ventricular/etiology , Hypoxia/complications , MAP Kinase Kinase Kinase 2/metabolism , Myocytes, Cardiac/enzymology , Ventricular Remodeling , Animals , Chronic Disease , Disease Models, Animal , Gene Expression Regulation , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/diagnostic imaging , Hypertrophy, Right Ventricular/enzymology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Hypoxia/enzymology , Hypoxia/genetics , Inflammation Mediators/metabolism , MAP Kinase Kinase Kinase 2/deficiency , MAP Kinase Kinase Kinase 2/genetics , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 7/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Time Factors , Ultrasonography
20.
J Card Fail ; 16(11): 901-10, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21055654

ABSTRACT

BACKGROUND: Apoptosis of cardiac myocytes plays a key role in the pathogenesis of many cardiac diseases, including viral myocarditis. The apoptotic signaling pathways that are activated during viral myocarditis and the role that these pathways play in disease pathogenesis have not been clearly delineated. METHODS AND RESULTS: We investigated the role of apoptotic signaling pathways after virus infection of primary cardiac myocytes. The death receptor-associated initiator caspase, caspase 8, and the effector caspase, caspase 3, were significantly activated after infection of primary cardiac myocytes with myocarditic, but not non-myocarditic, reovirus strains. Furthermore, reovirus-induced cardiac myocyte apoptosis was significantly inhibited by soluble death receptors. In contrast, the mitochondrial membrane potential remained unaltered and caspase 9, the initiator caspase associated with mitochondrial apoptotic signaling, was only weakly activated in cardiac myocytes after infection with myocarditic reovirus strains. Inhibition of mitochondrial apoptotic signaling had no effect on reovirus-induced cardiac myocyte apoptosis. In accordance with our in vitro data, caspase 8, but not caspase 9, was significantly activated in the hearts of reovirus-infected mice. CONCLUSIONS: Death receptor, but not mitochondrial, apoptotic signaling plays a key role in apoptosis after infection of cardiac myocytes with myocarditic reovirus strains.


Subject(s)
Apoptosis , Myocarditis/virology , Myocytes, Cardiac/pathology , Receptors, Death Domain/metabolism , Animals , Caspase 3/metabolism , Caspase 8/metabolism , Mice , Myocarditis/pathology , Rats , Reoviridae Infections/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...