Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Pest Manag Sci ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334233

ABSTRACT

BACKGROUND: There are various methods to control weeds, that represent considerable challenges for farmers around the globe, although applying small molecular compounds is still the most effective and versatile technology to date. In the search for novel chemical entities with new modes-of-action that can control weeds displaying resistance, we have investigated two spirocyclic classes of acyl-ACP thioesterase inhibitors based on X-ray co-crystal structures and subsequent modelling studies. RESULTS: By exploiting scaffold-hopping and isostere concepts, we were able to identify new spirolactam-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION: The present work covers a series of novel herbicidal lead structures that contain a spirocyclic lactam as a structural key feature carrying ortho-substituted benzyl or heteroarylmethylene side chains. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity. Glasshouse trials showed that the spirolactams outlined herein display promising control of grass-weed species in pre-emergence application combined with dose-response windows that enable partial selectivity in wheat and corn. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors showed efficacy against resistant grass weeds such as Alopecurus myosuroides and Lolium spp. on competitive levels compared with commercial standards. © 2024 Society of Chemical Industry.

2.
Future Med Chem ; 13(2): 211-224, 2021 01.
Article in English | MEDLINE | ID: mdl-33445971

ABSTRACT

It is well established that medicinal chemists should depart from the flat, sp2-dominated nature of traditional drugs and incorporate complexities of bioactive natural products, such as sp3-richness, 3D topology and chirality. There is a gray area, however, in the relevance of newly developed chemical scaffolds that exhibit these complexities but do not correlate to anything observed in nature. This can leave synthetic methodologists searching for structural similarities between their newly developed products and known natural products in search of justification. This article offers a perspective on how these types of complex 'abiotic' scaffolds can be appreciated purely on the basis of their structural novelty, and identifies the unique advantages arising when a complex chemical entity unrecognized by nature is introduced to biological systems.


Subject(s)
Anti-Anxiety Agents/chemistry , Anti-Inflammatory Agents/chemistry , Antimalarials/chemistry , Biological Products/chemistry , Enzyme Inhibitors/chemistry , Anti-Anxiety Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Chemistry Techniques, Synthetic/methods , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans , Molecular Conformation , Structure-Activity Relationship
3.
RSC Med Chem ; 11(12): 1413-1422, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-34095848

ABSTRACT

African sleeping sickness is a potentially fatal neglected disease affecting sub-Saharan Africa. High-throughput screening identified the thiazolyl-benzothiophenamide 1 to be active against the causative parasite, Trypanosoma brucei. This work establishes structure-activity relationships of 1, guiding the design of second generation derivatives. After screening against the clinically relevant species T. b. rhodesiense, the derivative 16 was identified as a suitable candidate for further investigation.

4.
Chem Sci ; 10(39): 9051-9056, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31827747

ABSTRACT

The divergent reactivity of 5-allenyloxazolidinones has been explored. This novel building block undergoes Pd(0)-catalyzed cross-coupling with boronic acids to form a wide range of chiral 1,3-dienes and pharmaceutically useful vinyloxazolidinones, the chemoselectivity being tightly controlled by a simple switch in additive.

SELECTION OF CITATIONS
SEARCH DETAIL