Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318207

ABSTRACT

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Subject(s)
Axons/enzymology , Axons/pathology , Central Nervous System/pathology , Germinal Center Kinases/metabolism , Nerve Regeneration , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Death/drug effects , Cell Survival/drug effects , Dependovirus/metabolism , Disease Models, Animal , Humans , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Neuronal Outgrowth/drug effects , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Organoids/metabolism , Protein Kinase Inhibitors/pharmacology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , Signal Transduction/drug effects
2.
Dev Biol ; 421(1): 77-85, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27554167

ABSTRACT

The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Oogenesis/genetics , RNA Stability/genetics , Alleles , Animals , Drosophila melanogaster/cytology , Genetic Loci , Mutation/genetics , Oocytes/cytology , Oocytes/metabolism , Phenotype , Protein Subunits/metabolism , Ribonucleoproteins/metabolism
3.
J Cell Biol ; 190(4): 541-51, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20713603

ABSTRACT

The discovery of large supramolecular complexes such as the purinosome suggests that subcellular organization is central to enzyme regulation. A screen of the yeast GFP strain collection to identify proteins that assemble into visible structures identified four novel filament systems comprised of glutamate synthase, guanosine diphosphate-mannose pyrophosphorylase, cytidine triphosphate (CTP) synthase, or subunits of the eIF2/2B translation factor complex. Recruitment of CTP synthase to filaments and foci can be modulated by mutations and regulatory ligands that alter enzyme activity, arguing that the assembly of these structures is related to control of CTP synthase activity. CTP synthase filaments are evolutionarily conserved and are restricted to axons in neurons. This spatial regulation suggests that these filaments have additional functions separate from the regulation of enzyme activity. The identification of four novel filaments greatly expands the number of known intracellular filament networks and has broad implications for our understanding of how cells organize biochemical activities in the cytoplasm.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Enzyme Inhibitors/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Neurons/cytology , Neurons/metabolism , Nucleotidyltransferases , Prions/biosynthesis , Protein Conformation , Protein Synthesis Inhibitors/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Staurosporine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...