Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37905053

ABSTRACT

Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.

2.
Neuroimage ; 245: 118696, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34732325

ABSTRACT

Anticipating social and non-social incentives recruits shared brain structures and promotes behavior. However, little is known about possible age-related behavioral changes, and how the human substantia nigra (SN) signals positive and negative social information. Therefore, we recorded intracranial electroencephalography (iEEG) from the SN of Parkinson's Disease (PD) patients (n = 12, intraoperative, OFF medication) in combination with a social incentive delay task including photos of neutral, positive or negative human gestures and mimics as feedback. We also tested a group of non-operated PD patients (n = 24, ON and OFF medication), and a sample of healthy young (n = 51) and older (n = 52) adults with behavioral readouts only. Behaviorally, the anticipation of both positive and negative social feedback equally accelerated response times in contrast to neutral social feedback in healthy young and older adults. Although this effect was not significant in the group of operated PD patients - most likely due to the small sample size - iEEG recordings in their SN showed a significant increase in alpha-beta power (9-20 Hz) from 300 to 600 ms after cue onset again for both positive and negative cues. Finally, in non-operated PD patients, the behavioral effect was not modulated by medication status (ON vs OFF medication) suggesting that other processes than dopaminergic neuromodulation play a role in driving invigoration by social incentives. Together, our findings provide novel and direct evidence for a role of the SN in processing positive and negative social information via specific oscillatory mechanisms in the alpha-beta range, and they suggest that anticipating social value in simple cue-outcome associations is intact in healthy aging and PD.


Subject(s)
Brain Mapping/methods , Cognition/physiology , Magnetic Resonance Imaging , Motivation/physiology , Reward , Substantia Nigra/diagnostic imaging , Substantia Nigra/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Electroencephalography , Female , Humans , Longevity , Male , Middle Aged
3.
PLoS One ; 8(2): e57957, 2013.
Article in English | MEDLINE | ID: mdl-23469118

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66)met (n = 12) and val(66)val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66)met carriers and val(66)val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Homeostasis , Motor Cortex/physiology , Neuronal Plasticity , Transcranial Magnetic Stimulation , Adult , Brain-Derived Neurotrophic Factor/genetics , Evoked Potentials, Motor , Genotype , Humans , Male , Motor Cortex/metabolism , Time Factors
4.
Am J Hum Genet ; 90(2): 301-7, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22305526

ABSTRACT

Congenital mirror movements (CMM) are characterized by involuntary movements of one side of the body that mirror intentional movements on the opposite side. CMM reflect dysfunctions and structural abnormalities of the motor network and are mainly inherited in an autosomal-dominant fashion. Recently, heterozygous mutations in DCC, the gene encoding the receptor for netrin 1 and involved in the guidance of developing axons toward the midline, have been identified but CMM are genetically heterogeneous. By combining genome-wide linkage analysis and exome sequencing, we identified heterozygous mutations introducing premature termination codons in RAD51 in two families with CMM. RAD51 mRNA was significantly downregulated in individuals with CMM resulting from the degradation of the mutated mRNA by nonsense-mediated decay. RAD51 was specifically present in the developing mouse cortex and, more particularly, in a subpopulation of corticospinal axons at the pyramidal decussation. The identification of mutations in RAD51, known for its key role in the repair of DNA double-strand breaks through homologous recombination, in individuals with CMM reveals a totally unexpected role of RAD51 in neurodevelopment. These findings open a new field of investigation for researchers attempting to unravel the molecular pathways underlying bimanual motor control in humans.


Subject(s)
Congenital Abnormalities/genetics , Dyskinesias/genetics , Movement Disorders/genetics , Rad51 Recombinase/genetics , Axons , DCC Receptor , DNA Breaks, Double-Stranded , DNA Repair , Down-Regulation , Exome/genetics , Family Health , Genetic Heterogeneity , Genome-Wide Association Study/methods , Haploinsufficiency , Heterozygote , Homologous Recombination/genetics , Humans , Motor Cortex/abnormalities , Mutation/genetics , Nerve Growth Factors/genetics , Netrin-1 , Pedigree , RNA, Messenger/genetics , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...