Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(11): 3853-3861, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36893476

ABSTRACT

Magnesium diboride (MgB2) has demonstrated, theoretically and experimentally, promise as a candidate material for hydrogen storage and has thus attracted much contemporary research interest. To study hydrogen gas adsorption on MgB2 thin films using a quartz crystal microbalance (QCM)─a workhorse apparatus for this specific experiment─MgB2 must be deposited uniformly on the active surface of the QCM without damaging the quartz's performance. In work presented here, a wet-chemistry colloid synthesis and deposition process of a MgB2 thin film on a gold (Au) surface was established to avoid the extreme conditions of conventional physical deposition methods. This process also counteracts the unwanted phenomena of drying droplets on a solid surface, particularly the coffee-ring effect. To verify the normal function of the QCM after MgB2 deposition and its ability to obtain meaningful data, simple gas adsorption tests were conducted on the QCM, and the MgB2 film on the QCM was characterized with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) for elemental analysis and surface roughness, respectively. To obtain information about the thickness and the involvement of the coffee-ring effect, the same synthesis route was applied on a similar gold substrate─an evaporated Au film on glass. XPS characterization of the film and its precursor suspension shows the potential existence of both MgB2 and its oxide forms. The film's thickness on evaporated Au was measured by scanning transmission electron microscopy (STEM) to be 3.9 nm. The resulting samples show mitigation of the coffee-ring effect through roughness measurements with AFM at two scan sizes of 50 × 50 and 1 × 1 µm2.

2.
ACS Omega ; 6(47): 31907-31918, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34870013

ABSTRACT

We synthesized and characterized a novel iron(II) aceto EMIM coordination compound, which has a simplified empirical formula Fe4(OAc)10[EMIM]2, in two different hydration forms: as anhydrous monoclinic compound and triclinic dihydrate Fe4(OAc)10[EMIM]2·2H2O. The dihydrate compound is isostructural with recently reported Mn4(OAc)10[EMIM]2·2H2O, while the anhydrate is a superstructure of the Mn counterpart, suggesting the existence of solid solutions. Both new Fe compounds contain chains of Fe2+ octahedrally coordinated exclusively by acetate groups. The EMIM moieties do not interact directly with the Fe2+ and contribute to the structural framework of the compound through van der Waals forces and C-H···O hydrogen bonds with the acetate anions. The compounds have a melting temperature of ∼94 °C; therefore, they can be considered metal-containing ionic liquids. Differential thermal analysis indicates three endothermic transitions associated with melting, structural rearrangement in the molten state at about 157 °C, and finally, thermal decomposition of the Fe4(OAc)10[EMIM]2. Thermogravimetric analyses indicate an ∼72 wt % mass loss during the decomposition at 280-325 °C. The Fe4(OAc)10[EMIM]2 compounds have higher thermal stability than their Mn counterparts and [EMIM][OAc] but lower compared to iron(II) acetate. Temperature-programmed desorption coupled with mass spectrometry shows that the decomposition pathway of the Fe4(OAc)10[EMIM]2 involves four distinct regimes with peak temperatures at 88, 200, 267, and 345 °C. The main species observed in the decomposition of the compound are CH3, H2O, N2, CO, OC-CH3, OH-CO, H3C-CO-CH3, and H3C-O-CO-CH3. Variable-temperature infrared vibrational spectroscopy indicates that the phase transition at 160-180 °C is associated with a reorientation of the acetate ions, which may lead to a lower interaction with the [EMIM]+ before the decomposition of the Fe4(OAc)10[EMIM]2 upon further heating. The Fe4(OAc)10[EMIM]2 compounds are porous, plausibly capable of accommodating other types of molecules.

3.
ACS Omega ; 5(25): 15592-15600, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637835

ABSTRACT

We synthesized and determined crystal structures of two manganese(II) aceto EMIM coordination compounds with simplified empirical formulas Mn4(OAc)10[EMIM]2 and Mn4(OAc)10[EMIM]2·2H2O. Both compounds feature extended chains of Mn2+ octahedrally coordinated exclusively by acetate anions, which has been observed for the first time. The EMIM moieties and water molecules participate in hydrogen bonding with acetate anions but do not directly interact with the metal cation. Both compounds have melting temperatures around 120 °C and can be considered as (non-room-temperature) ionic liquids. The structural arrangement represented by the two title compounds is robust in terms of accommodating other types of cations and allows for tuning of physical properties of the ionic liquid by means of cation substitution. Thermal analysis results obtained using TGA-DSC and VT IR suggest melting phase transitions around 120 °C, followed by structural rearrangement in the molten state taking place around 140-160 °C. Compounds I and II have a higher thermal stability range compared to [EMIM][OAc] ionic liquid, with an onset decomposition temperature above 260 °C.

SELECTION OF CITATIONS
SEARCH DETAIL