Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Med (Lausanne) ; 9: 915367, 2022.
Article in English | MEDLINE | ID: mdl-35783607

ABSTRACT

While the biomarkers of COVID-19 severity have been thoroughly investigated, the key biological dynamics associated with COVID-19 resolution are still insufficiently understood. We report a case of full resolution of severe COVID-19 due to convalescent plasma transfusion. Following transfusion, the patient showed fever remission, improved respiratory status, and rapidly decreased viral burden in respiratory fluids and SARS-CoV-2 RNAemia. Longitudinal unbiased proteomic analysis of plasma and single-cell transcriptomics of peripheral blood cells conducted prior to and at multiple times after convalescent plasma transfusion identified the key biological processes associated with the transition from severe disease to disease-free state. These included (i) temporally ordered upward and downward changes in plasma proteins reestablishing homeostasis and (ii) post-transfusion disappearance of a subset of monocytes characterized by hyperactivated Interferon responses and decreased TNF-α signaling. Monitoring specific dysfunctional myeloid cell subsets in peripheral blood may provide prognostic keys in COVID-19.

2.
medRxiv ; 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35132422

ABSTRACT

BACKGROUND: While the biomarkers of COVID-19 severity have been thoroughly investigated, the key biological dynamics associated with COVID-19 resolution are still insufficiently understood. MAIN BODY: We report a case of full resolution of severe COVID-19 due to convalescent plasma transfusion in a patient with underlying multiple autoimmune syndrome. Following transfusion, the patient showed fever remission, improved respiratory status, and rapidly decreased viral burden in respiratory fluids and SARS-CoV-2 RNAemia. Longitudinal unbiased proteomic analysis of plasma and single-cell transcriptomics of peripheral blood cells conducted prior to and at multiple times after convalescent plasma transfusion identified the key biological processes associated with the transition from severe disease to disease-free state. These included (i) temporally ordered upward and downward changes in plasma proteins reestablishing homeostasis and (ii) post-transfusion disappearance of a particular subset of dysfunctional monocytes characterized by hyperactivated Interferon responses and decreased TNF-α signaling. CONCLUSIONS: Monitoring specific subsets of innate immune cells in peripheral blood may provide prognostic keys in severe COVID-19. Moreover, understanding disease resolution at the molecular and cellular level should contribute to identify targets of therapeutic interventions against severe COVID-19.

3.
BMC Med ; 20(1): 32, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35073931

ABSTRACT

BACKGROUND: Protection from severe disease and hospitalization by SARS-CoV-2 vaccination has been amply demonstrated by real-world data. However, the rapidly evolving pandemic raises new concerns. One pertains efficacy of adenoviral vector-based vaccines, particularly the single-dose Ad26.COV2.S, relative to mRNA vaccines. MAIN BODY: We investigated the immunogenicity of Ad26.COV2.S and mRNA vaccines in 33 subjects vaccinated with either vaccine class 5 months earlier on average. After controlling for the time since vaccination, Spike-binding antibody and neutralizing antibody levels were higher in the mRNA-vaccinated subjects, while no significant differences in antigen-specific B cell and T cell responses were observed between the two groups. CONCLUSIONS: A dichotomy exists between the humoral and cellular responses elicited by the two vaccine classes. Testing only for humoral responses to compare the durability of SARS-CoV-2 vaccine-induced responses, as typically performed for public health and research purposes, is insufficient.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Antibodies, Viral , Humans , Immunity, Humoral , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination , mRNA Vaccines
4.
J Immunol Methods ; 499: 113165, 2021 12.
Article in English | MEDLINE | ID: mdl-34634317

ABSTRACT

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Dried Blood Spot Testing , Antibodies, Viral/immunology , Binding Sites , COVID-19/blood , COVID-19/immunology , Humans , Vaccination
5.
medRxiv ; 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34580675

ABSTRACT

Protection from severe disease and hospitalization by SARS-CoV-2 vaccination has been amply demonstrated by real-world data. However, the rapidly evolving pandemic raises new concerns. One pertains efficacy of adenoviral vector-based vaccines, particularly the single-dose Ad26.COV2.S, relative to mRNA vaccines. We investigated the immunogenicity of Ad26.COV2.S and mRNA vaccines in 33 subjects vaccinated with either vaccine class five months earlier on average. After controlling for time since vaccination, Spike-binding antibody and neutralizing antibody levels were higher in the mRNA-vaccinated subjects, while no significant differences in antigen-specific B cell and T cell responses were observed between the two groups. Thus, a dichotomy exists between humoral and cellular responses elicited by the two vaccine classes. Our results have implications for the need of booster doses in vaccinated subjects and might explain the dichotomy reported between the waning protection from symptomatic infection by SARS-CoV-2 vaccination and its persisting efficacy in preventing hospitalization and death.

6.
J Infect Dis ; 224(8): 1345-1356, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34387310

ABSTRACT

BACKGROUND: We studied risk factors, antibodies, and symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a diverse, ambulatory population. METHODS: A prospective cohort (n = 831) previously undiagnosed with SARS-CoV-2 infection underwent serial testing (SARS-CoV-2 polymerase chain reaction, immunoglobulin G [IgG]) for 6 months. RESULTS: Ninety-three participants (11.2%) tested SARS-CoV-2-positive: 14 (15.1%) asymptomatic, 24 (25.8%) severely symptomatic. Healthcare workers (n = 548) were more likely to become infected (14.2% vs 5.3%; adjusted odds ratio, 2.1; 95% confidence interval, 1.4-3.3) and severely symptomatic (29.5% vs 6.7%). IgG antibodies were detected after 79% of asymptomatic infections, 89% with mild-moderate symptoms, and 96% with severe symptoms. IgG trajectories after asymptomatic infections (slow increases) differed from symptomatic infections (early peaks within 2 months). Most participants (92%) had persistent IgG responses (median 171 days). In multivariable models, IgG titers were positively associated with symptom severity, certain comorbidities, and hospital work. Dyspnea and neurologic changes (including altered smell/taste) lasted ≥ 120 days in ≥ 10% of affected participants. Prolonged symptoms (frequently more severe) corresponded to higher antibody levels. CONCLUSIONS: In a prospective, ethnically diverse cohort, symptom severity correlated with the magnitude and trajectory of IgG production. Symptoms frequently persisted for many months after infection.Clinical Trials Registration. NCT04336215.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Severity of Illness Index , Adult , Antibodies, Viral/immunology , Asymptomatic Infections/epidemiology , COVID-19/blood , COVID-19/epidemiology , COVID-19/transmission , Comorbidity , Female , Humans , Immunoglobulin G/immunology , Incidence , Male , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2/immunology , Young Adult
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34234013

ABSTRACT

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Subject(s)
Bacteriophages/genetics , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Programs , Administration, Inhalation , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Dependovirus/genetics , Drug Storage , Female , Immunization Programs/methods , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Proof of Concept Study , Temperature
8.
medRxiv ; 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34282427

ABSTRACT

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and COVID-19 vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.

9.
Viruses ; 13(6)2021 05 21.
Article in English | MEDLINE | ID: mdl-34064066

ABSTRACT

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), enters cells through attachment to the human angiotensin converting enzyme 2 (hACE2) via the receptor-binding domain (RBD) in the surface/spike (S) protein. Several pseudotyped viruses expressing SARS-CoV-2 S proteins are available, but many of these can only infect hACE2-overexpressing cell lines. Here, we report the use of a simple, two-plasmid, pseudotyped virus system comprising a SARS-CoV-2 spike-expressing plasmid and an HIV vector with or without vpr to investigate the SARS-CoV-2 entry event in various cell lines. When an HIV vector without vpr was used, pseudotyped SARS-CoV-2 viruses produced in the presence of fetal bovine serum (FBS) were able to infect only engineered hACE2-overexpressing cell lines, whereas viruses produced under serum-free conditions were able to infect a broader range of cells, including cells without hACE2 overexpression. When an HIV vector containing vpr was used, pseudotyped viruses were able to infect a broad spectrum of cell types regardless of whether viruses were produced in the presence or absence of FBS. Infection sensitivities of various cell types did not correlate with mRNA abundance of hACE2, TMPRSS2, or TMPRSS4. Pseudotyped SARS-CoV-2 viruses and replication-competent SARS-CoV-2 virus were equally sensitive to neutralization by an anti-spike RBD antibody in cells with high abundance of hACE2. However, the anti-spike RBD antibody did not block pseudotyped viral entry into cell lines with low abundance of hACE2. We further found that CD147 was involved in viral entry in A549 cells with low abundance of hACE2. Thus, our assay is useful for drug and antibody screening as well as for investigating cellular receptors, including hACE2, CD147, and tyrosine-protein kinase receptor UFO (AXL), for the SARS-CoV-2 entry event in various cell lines.


Subject(s)
HIV/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization , Caco-2 Cells , Cell Line , Genetic Vectors , HEK293 Cells , Humans , Plasmids , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Transfection , vpr Gene Products, Human Immunodeficiency Virus/metabolism
10.
medRxiv ; 2021 May 12.
Article in English | MEDLINE | ID: mdl-33880486

ABSTRACT

Much is to be learned about the interface between immune responses to SARS-CoV-2 infection and vaccination. We monitored immune responses specific to SARS-CoV-2 Spike Receptor-Binding-Domain (RBD) in convalescent individuals for eight months after infection diagnosis and following vaccination. Over time, neutralizing antibody responses, which are predominantly RBD specific, generally decreased, while RBD-specific memory B cells persisted. RBD-specific antibody and B cell responses to vaccination were more vigorous than those elicited by infection in the same subjects or by vaccination in infection-naïve comparators. Notably, the frequencies of double negative B memory cells, which are dysfunctional and potentially pathogenic, increased in the convalescent subjects over time. Unexpectedly, this effect was reversed by vaccination. Our work identifies a novel aspect of immune dysfunction in mild/moderate COVID-19, supports the practice of offering SARS-CoV-2 vaccination regardless of infection history, and provides a potential mechanistic explanation for the vaccination-induced reduction of "Long-COVID" symptoms.

11.
bioRxiv ; 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33758865

ABSTRACT

Development of effective vaccines against Coronavirus Disease 2019 (COVID-19) is a global imperative. Rapid immunization of the world human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and many different vaccine approaches are being pursued to meet this task. Engineered filamentous bacteriophage (phage) have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the design, development, and initial evaluation of targeted phage-based vaccination approaches against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) by using dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. Towards a unique phage- and AAVP-based dual-display candidate approach, we first performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein for display on the recombinant major capsid coat protein pVIII. Targeted phage particles carrying one of these epitopes induced a strong and specific humoral response. In an initial experimental approach, when these targeted phage particles were further genetically engineered to simultaneously display a ligand peptide (CAKSMGDIVC) on the minor capsid protein pIII, which enables receptor-mediated transport of phage particles from the lung epithelium into the systemic circulation (termed "dual-display"), they enhanced a systemic and specific spike (S) protein-specific antibody response upon aerosolization into the lungs of mice. In a second line of investigation, we engineered targeted AAVP particles to deliver the entire S protein gene under the control of a constitutive cytomegalovirus (CMV) promoter, which induced tissue-specific transgene expression stimulating a systemic S protein-specific antibody response. As proof-of-concept preclinical experiments, we show that targeted phage- and AAVP-based particles serve as robust yet versatile enabling platforms for ligand-directed immunization and promptly yield COVID-19 vaccine prototypes for further translational development. SIGNIFICANCE: The ongoing COVID-19 global pandemic has accounted for over 2.5 million deaths and an unprecedented impact on the health of mankind worldwide. Over the past several months, while a few COVID-19 vaccines have received Emergency Use Authorization and are currently being administered to the entire human population, the demand for prompt global immunization has created enormous logistical challenges--including but not limited to supply, access, and distribution--that justify and reinforce the research for additional strategic alternatives. Phage are viruses that only infect bacteria and have been safely administered to humans as antibiotics for decades. As experimental proof-of-concept, we demonstrated that aerosol pulmonary vaccination with lung-targeted phage particles that display short epitopes of the S protein on the capsid as well as preclinical vaccination with targeted AAVP particles carrying the S protein gene elicit a systemic and specific immune response against SARS-CoV-2 in immunocompetent mice. Given that targeted phage- and AAVP-based viral particles are sturdy yet simple to genetically engineer, cost-effective for rapid large-scale production in clinical grade, and relatively stable at room temperature, such unique attributes might perhaps become additional tools towards COVID-19 vaccine design and development for immediate and future unmet needs.

12.
J Lipid Res ; 61(12): 1617-1628, 2020 12.
Article in English | MEDLINE | ID: mdl-32848049

ABSTRACT

The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin's anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antitubercular Agents/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cholesterol/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Simvastatin/pharmacology , Animals , Autophagy/drug effects , Humans , Lysosomes/metabolism , Macrophages/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects
13.
Immunogenetics ; 72(5): 305-314, 2020 07.
Article in English | MEDLINE | ID: mdl-32556499

ABSTRACT

Several genetic studies have implicated genes that encode for components of the innate immune response in tuberculosis (TB) susceptibility. The complement system is an early player in the innate immune response and provides the host with initial protection by promoting phagocytosis of apoptotic or necrotic cells. The C1q molecule is the first component of the classical pathway that leads to the activation of complement by binding to immune complexes and is encoded by the C1Q gene cluster. We investigated variants in this region to determine its association with TB susceptibility. Five single nucleotide polymorphisms (SNPs) (rs12033074, rs631090, rs172378, rs587585, and rs665691) were genotyped using TaqMan® SNP assays in 456 TB cases and 448 healthy controls and analysed by logistic regression models. The rs587585 variant showed a significant additive allelic association where the minor G allele was found more frequently in TB cases than in controls in both the discovery (p = 0.023; OR = 1.30; 95% CI, 1.04-1.64) and validation cohort (p = 0.038; OR = 1.31; 95% CI, 1.22-1.40). In addition, we detected increased C1qA expression when comparing cases and controls (p = 0.037) and linked this to a dosage effect of the G allele, which increased C1qA expression in TB cases. This is the first study to report the association of C1Q gene polymorphisms with progression to tuberculosis.


Subject(s)
Complement C1q/genetics , Complement C1q/metabolism , Genetic Predisposition to Disease/genetics , Tuberculosis/genetics , Adult , Alleles , Black People/genetics , Case-Control Studies , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Multigene Family , Polymorphism, Single Nucleotide , Tuberculosis/immunology , Young Adult
14.
J Infect Dis ; 221(7): 1079-1087, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31605489

ABSTRACT

BACKGROUND: Tuberculosis (TB) treatment is lengthy and complicated and patients often develop chronic lung disease. Recent attention has focused on host-directed therapies aimed at optimizing immune responses to Mycobacterium tuberculosis (Mtb), as adjunctive treatment given with antitubercular drugs. In addition to their cholesterol-lowering properties, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have broad anti-inflammatory and immunomodulatory activities. METHODS: In the current study, we screened 8 commercially available statins for cytotoxic effect, anti-TB activity, synergy with first-line drugs in macrophages, pharmacokinetics and adjunctive bactericidal activity, and, in 2 different mouse models, as adjunctive therapy to first-line TB drugs. RESULTS: Pravastatin showed the least toxicity in THP-1 and Vero cells. At nontoxic doses, atorvastatin and mevastatin were unable to inhibit Mtb growth in THP-1 cells. Simvastatin, fluvastatin, and pravastatin showed the most favorable therapeutic index and enhanced the antitubercular activity of the first-line drugs isoniazid, rifampin, and pyrazinamide in THP-1 cells. Pravastatin modulated phagosomal maturation characteristics in macrophages, phenocopying macrophage activation, and exhibited potent adjunctive activity in the standard mouse model of TB chemotherapy and in a mouse model of human-like necrotic TB lung granulomas. CONCLUSIONS: These data provide compelling evidence for clinical evaluation of pravastatin as adjunctive, host-directed therapy for TB.


Subject(s)
Antitubercular Agents/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis , Animals , Antitubercular Agents/therapeutic use , Cell Survival , Chlorocebus aethiops , Disease Models, Animal , Female , Granuloma , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lung/drug effects , Lung/microbiology , Lung Diseases , Macrophages/drug effects , Macrophages/microbiology , Mice , THP-1 Cells , Tuberculosis/drug therapy , Tuberculosis/microbiology , Vero Cells
15.
PLoS Pathog ; 14(8): e1007223, 2018 08.
Article in English | MEDLINE | ID: mdl-30161232

ABSTRACT

Foam cells are lipid-laden macrophages that contribute to the inflammation and tissue damage associated with many chronic inflammatory disorders. Although foam cell biogenesis has been extensively studied in atherosclerosis, how these cells form during a chronic infectious disease such as tuberculosis is unknown. Here we report that, unlike the cholesterol-laden cells of atherosclerosis, foam cells in tuberculous lung lesions accumulate triglycerides. Consequently, the biogenesis of foam cells varies with the underlying disease. In vitro mechanistic studies showed that triglyceride accumulation in human macrophages infected with Mycobacterium tuberculosis is mediated by TNF receptor signaling through downstream activation of the caspase cascade and the mammalian target of rapamycin complex 1 (mTORC1). These features are distinct from the known biogenesis of atherogenic foam cells and establish a new paradigm for non-atherogenic foam cell formation. Moreover, they reveal novel targets for disease-specific pharmacological interventions against maladaptive macrophage responses.


Subject(s)
Atherosclerosis/pathology , Foam Cells/metabolism , Foam Cells/pathology , Lipid Metabolism/physiology , Tuberculosis/immunology , Tuberculosis/metabolism , Animals , Atherosclerosis/metabolism , Callithrix , Cells, Cultured , Humans , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Rabbits
16.
mSphere ; 2(6)2017.
Article in English | MEDLINE | ID: mdl-29104936

ABSTRACT

During tuberculosis, macrophages are critical for both pathogen survival and host immune activation. Since expression of particular cell surface markers reflects cell function, we used flow cytometry to measure the abundance of surface markers associated with polarity, lipid uptake, or pattern recognition on macrophages found in induced sputum. Nine macrophage surface markers were examined from three groups of donors: infection-free, latent tuberculosis infection, and active pulmonary tuberculosis. Using a trend test, we found that expression of Toll-like receptor 2 was greater from absence of infection to latent infection and from latent infection to active tuberculosis. The results point to the possibility that innate immune cell phenotypes be used to distinguish among tuberculosis infection stages. Moreover, this study shows that readily accessible sputum macrophages have potential for tuberculosis diagnosis and prognosis. IMPORTANCEMycobacterium tuberculosis is an intracellular pathogen that parasitizes the host macrophage. While approximately two billion people are infected worldwide, only 5 to 10% become diseased with pulmonary tuberculosis, at least in the absence of comorbidities. Tuberculosis control requires development of noninvasive methods probing the host immune status to help distinguish latent infection from active tuberculosis. With such methods, high-risk individuals could be targeted for treatment before disease manifestation. Previous investigations have been based on examination of peripheral blood cells or, more rarely, lung macrophages obtained with invasive procedures, such as bronchoalveolar lavages. Here we show that differences exist in the expression of a surface protein (Toll-like receptor 2) between macrophages recovered from the sputum of individuals in different diagnostic groups: i.e., infection free, latent tuberculosis infection, and active pulmonary tuberculosis. Thus, phenotypic analysis of local macrophages obtained with noninvasive procedures can help distinguish among tuberculosis infection stages.

17.
J Antimicrob Chemother ; 71(6): 1570-7, 2016 06.
Article in English | MEDLINE | ID: mdl-26903278

ABSTRACT

BACKGROUND: The repurposing of existing agents may accelerate TB drug development. Recently, we reported that the lipid-lowering drug simvastatin, when added to the first-line antitubercular regimen, reduces the lung bacillary burden in chronically infected mice. OBJECTIVES: We investigated whether the addition of simvastatin to the first-line regimen (isoniazid/rifampicin/pyrazinamide) shortens the duration of curative TB treatment in mice. METHODS: Mycobacterium tuberculosis-infected THP-1 cells were exposed to simvastatin to determine the effect of statins on the activity of first-line anti-TB drug activity and intracellular rifampicin concentration. Single-dose and steady-state pharmacokinetic studies guided optimized simvastatin dosing in vivo. BALB/c mice were aerosol-infected with M. tuberculosis H37Rv and drug treatment was initiated 6 weeks post-infection. Separate groups of mice received standard TB treatment with or without simvastatin. Relapse rates were assessed 3 months after discontinuation of each treatment regimen. MALDI-MS imaging was used to image the cholesterol content of mouse lung lesions. RESULTS: Simvastatin significantly enhanced the bactericidal activity of first-line drugs against intracellular M. tuberculosis without altering intracellular rifampicin concentrations. Adjunctive treatment with 60 mg/kg simvastatin shortened the time required to achieve culture-negative lungs from 4.5 to 3.5 months. Following 2.5, 3.5 and 4.5 months of treatment, relapse rates were 100%, 50% and 0%, respectively, in the control group and 50% (P = 0.03), 20% and 0%, respectively, in the statin group. Simvastatin did not alter plasma or lung lesion cholesterol levels. CONCLUSIONS: Statins are attractive candidates for host-directed, adjunctive TB therapy. Further preclinical studies are needed to define the optimal statin and dosing.


Subject(s)
Antitubercular Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Cell Line , Combined Modality Therapy/methods , Disease Models, Animal , Drug Therapy/methods , Female , Humans , Mice, Inbred BALB C , Monocytes/microbiology , Time Factors , Treatment Outcome , Tuberculosis/microbiology
18.
J Immunol ; 193(1): 30-34, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24899504

ABSTRACT

Vitamin D has long been linked to resistance to tuberculosis, an infectious respiratory disease that is increasingly hard to treat because of multidrug resistance. Previous work established that vitamin D induces macrophage antimicrobial functions against Mycobacterium tuberculosis. In this article, we report a novel, metabolic role for vitamin D in tuberculosis identified through integrated transcriptome and mechanistic studies. Transcriptome analysis revealed an association between vitamin D receptor (VDR) and lipid metabolism in human tuberculosis and infected macrophages. Vitamin D treatment of infected macrophages abrogated infection-induced accumulation of lipid droplets, which are required for intracellular M. tuberculosis growth. Additional transcriptomics results showed that vitamin D downregulates the proadipogenic peroxisome proliferator-activated receptor γ (PPARγ) in infected macrophages. PPARγ agonists reversed the antiadipogenic and the antimicrobial effects of VDR, indicating a link between VDR and PPARγ signaling in regulating both vitamin D functions. These findings suggest the potential for host-based, adjunct antituberculosis therapy targeting lipid metabolism.


Subject(s)
Lipid Metabolism/drug effects , Mycobacterium tuberculosis/immunology , Transcriptome/drug effects , Tuberculosis/immunology , Vitamin D/pharmacology , Vitamins/pharmacology , Cell Line, Tumor , Humans , Lipid Metabolism/immunology , PPAR gamma/immunology , Receptors, Calcitriol/immunology , Transcriptome/immunology , Tuberculosis/drug therapy , Tuberculosis/pathology
19.
J Antimicrob Chemother ; 69(9): 2453-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24855121

ABSTRACT

BACKGROUND: The need to develop new, improved treatments for tuberculosis (TB) remains urgent, and the repurposing of existing drugs represents a possible shortcut to market. Recently, there has been significant interest in host-directed adjuvant therapy to enhance bacillary killing. HMG-CoA reductase inhibitors (statins), which are among the most commonly prescribed drugs, have immunomodulatory properties and improve the clinical outcomes of bacterial infections. METHODS: We studied the tuberculocidal activity of simvastatin alone and in combination with first-line anti-TB drugs in J774 macrophages and during chronic TB infection. RESULTS: Exposure to 5 µM simvastatin significantly increased the tuberculocidal activity of isoniazid in J774 macrophages at Day 3 after infection versus isoniazid alone (P=0.02). Similarly, relative to the standard oral regimen of rifampicin (10 mg/kg), isoniazid (10 mg/kg) and pyrazinamide (150 mg/kg) given five times weekly, the addition of 25 mg/kg simvastatin enhanced bacillary killing, reducing the number of lung cfu by an additional 1 log10 at Day 28 (P<0.01) and by a further 1.25 log10 at Day 56 (P<0.01). CONCLUSIONS: The potential additive activity of simvastatin to first-line TB treatment holds promise. However, further studies to identify the optimal statin and dosing are required. In addition the ability of combination treatment with statins to accelerate the time required to achieve a stable cure remains to be explored.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Synergism , Simvastatin/therapeutic use , Tuberculosis/drug therapy , Animals , Antitubercular Agents/pharmacology , Bacterial Load , Cell Line , Colony Count, Microbial , Disease Models, Animal , Drug Therapy, Combination/methods , Female , Isoniazid/pharmacology , Isoniazid/therapeutic use , Lung/microbiology , Macrophages/drug effects , Macrophages/microbiology , Mice, Inbred BALB C , Pyrazinamide/pharmacology , Pyrazinamide/therapeutic use , Rifampin/pharmacology , Rifampin/therapeutic use , Simvastatin/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...