Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fertil Steril ; 117(3): 528-535, 2022 03.
Article in English | MEDLINE | ID: mdl-34998577

ABSTRACT

OBJECTIVE: To perform a series of analyses characterizing an artificial intelligence (AI) model for ranking blastocyst-stage embryos. The primary objective was to evaluate the benefit of the model for predicting clinical pregnancy, whereas the secondary objective was to identify limitations that may impact clinical use. DESIGN: Retrospective study. SETTING: Consortium of 11 assisted reproductive technology centers in the United States. PATIENT(S): Static images of 5,923 transferred blastocysts and 2,614 nontransferred aneuploid blastocysts. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Prediction of clinical pregnancy (fetal heartbeat). RESULT(S): The area under the curve of the AI model ranged from 0.6 to 0.7 and outperformed manual morphology grading overall and on a per-site basis. A bootstrapped study predicted improved pregnancy rates between +5% and +12% per site using AI compared with manual grading using an inverted microscope. One site that used a low-magnification stereo zoom microscope did not show predicted improvement with the AI. Visualization techniques and attribution algorithms revealed that the features learned by the AI model largely overlap with the features of manual grading systems. Two sources of bias relating to the type of microscope and presence of embryo holding micropipettes were identified and mitigated. The analysis of AI scores in relation to pregnancy rates showed that score differences of ≥0.1 (10%) correspond with improved pregnancy rates, whereas score differences of <0.1 may not be clinically meaningful. CONCLUSION(S): This study demonstrates the potential of AI for ranking blastocyst stage embryos and highlights potential limitations related to image quality, bias, and granularity of scores.


Subject(s)
Artificial Intelligence/standards , Blastocyst/cytology , Embryo Transfer/standards , Image Processing, Computer-Assisted/standards , Blastocyst/physiology , Cohort Studies , Databases, Factual/standards , Embryo Transfer/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Microscopy/methods , Microscopy/standards , Pregnancy , Pregnancy Rate/trends , Retrospective Studies
2.
IEEE Trans Vis Comput Graph ; 27(5): 2638-2647, 2021 May.
Article in English | MEDLINE | ID: mdl-33750700

ABSTRACT

With the rapidly increasing resolutions of 360° cameras, head-mounted displays, and live-streaming services, streaming high-resolution panoramic videos over limited-bandwidth networks is becoming a critical challenge. Foveated video streaming can address this rising challenge in the context of eye-tracking-equipped virtual reality head-mounted displays. However, conventional log-polar foveated rendering suffers from a number of visual artifacts such as aliasing and flickering. In this paper, we introduce a new log-rectilinear transformation that incorporates summed-area table filtering and off-the-shelf video codecs to enable foveated streaming of 360° videos suitable for VR headsets with built-in eye-tracking. To validate our approach, we build a client-server system prototype for streaming 360° videos which leverages parallel algorithms over real-time video transcoding. We conduct quantitative experiments on an existing 360° video dataset and observe that the log-rectilinear transformation paired with summed-area table filtering heavily reduces flickering compared to log-polar subsampling while also yielding an additional 10% reduction in bandwidth usage.

SELECTION OF CITATIONS
SEARCH DETAIL
...