Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 37(12): 3102-3114, 2018 12.
Article in English | MEDLINE | ID: mdl-30239039

ABSTRACT

Sediments from the Upper Columbia River, Washington, USA, are contaminated with metals from smelting operations. We conducted short-term and long-term tests with the midge Chironomus dilutus and the amphipod Hyalella azteca and short-term tests with the freshwater mussel Lampsilis siliquoidea with 54 sediments from the Upper Columbia River to characterize thresholds for toxicity of metals to benthic invertebrates. Test sediments were screened for toxicity by comparisons with low-metal reference sediments. Toxic effects on amphipods occurred primarily in sediments from the upstream (riverine) reach, and toxic effects on midges occurred in sediments from both the upstream reach and the downstream (reservoir) reach. Little toxicity was observed in mussel tests. Toxicity thresholds (20% effect concentrations [EC20s]) for metals in sediment and porewater were estimated from logistic concentration-response models. Copper (Cu) concentrations in the simultaneously extracted metal fraction of sediments and bioavailable Cu in porewater, as characterized by biotic ligand models, had consistent associations with toxicity endpoints. Concentration-response models for sediment Cu produced EC20s for 6 endpoints, with long-term amphipod survival and reproduction being the most sensitive. A logistic regression model fitted to an endpoint sensitivity distribution for sediment Cu predicted that approximately one-half of the sediments tested would be toxic to at least one endpoint and that approximately 20% of test sediments would be toxic to more than half of the endpoints. These results indicate that sediments from the upstream reach of the Upper Columbia River, which contain high concentrations of metals associated with slags, cause a wide range of toxic effects in laboratory tests and are likely to have adverse effects on benthic invertebrate communities. Environ Toxicol Chem 2018;37:3102-3114. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Ecosystem , Geologic Sediments/chemistry , Invertebrates/drug effects , Rivers/chemistry , Toxicity Tests , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Bivalvia/drug effects , Chironomidae/drug effects , Fresh Water , Metals/toxicity , Porosity , Principal Component Analysis , Washington
2.
Environ Toxicol Chem ; 36(11): 2906-2915, 2017 11.
Article in English | MEDLINE | ID: mdl-28597934

ABSTRACT

Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater. Environ Toxicol Chem 2017;36:2906-2915. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Geologic Sediments/analysis , Metals/chemistry , Biological Availability , Carbon/analysis , Carbon/metabolism , Cations/chemistry , Geologic Sediments/chemistry , Mass Spectrometry , Metals/analysis , Metals/metabolism , Mining , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
3.
Environ Monit Assess ; 189(2): 56, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28091884

ABSTRACT

The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10-17 pCi/g) and rodents (<10-43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9-31.4 µg/g) and Se (5.81-7.20 µg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.


Subject(s)
Mining , Radiation Monitoring , Trace Elements/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Animals , Arizona , Arsenic/analysis , Biota , Cadmium/analysis , Copper , Humans , Mercury/analysis , Nickel , Radiation Exposure , Selenium , Thallium/analysis , Zinc/analysis
4.
Environ Toxicol Chem ; 36(3): 786-796, 2017 03.
Article in English | MEDLINE | ID: mdl-27699830

ABSTRACT

Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In contrast, the EC50s of fatmucket tested in the single-species study were in the high percentiles (>75th) of species sensitivity distributions for 6 of 7 organic chemicals, indicating mussels might be relatively insensitive to organic chemicals in acute exposures. Environ Toxicol Chem 2017;36:786-796. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Fresh Water/chemistry , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Female , Larva/drug effects , Lethal Dose 50 , Reproduction/drug effects , Species Specificity , Toxicity Tests, Acute , Water Pollutants, Chemical/chemistry , Water Quality
5.
J Vis Exp ; (108): 53477, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26967350

ABSTRACT

Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.


Subject(s)
Behavior, Animal/drug effects , Copper/toxicity , Fishes/physiology , Swimming/physiology , Water Pollutants, Chemical/toxicity , Water Pollution, Chemical/adverse effects , Animals , Photography/methods , Video Recording
6.
Environ Toxicol Chem ; 35(10): 2439-2447, 2016 10.
Article in English | MEDLINE | ID: mdl-26932313

ABSTRACT

Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast-cerophyll-trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca. Environ Toxicol Chem 2016;35:2439-2447. © 2016 SETAC.


Subject(s)
Amphipoda/drug effects , Geologic Sediments/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Amphipoda/growth & development , Amphipoda/physiology , Animals , Laboratories/standards , Reproduction/drug effects , Time Factors , Toxicity Tests/standards , Water Pollutants, Chemical/chemistry , Water Quality
7.
Environ Toxicol Chem ; 35(7): 1825-34, 2016 07.
Article in English | MEDLINE | ID: mdl-26681556

ABSTRACT

The authors investigated the chronic toxicity of aqueous Pb to the amphipod Hyalella azteca (Hyalella) in 42-d tests using 2 different diets: 1) the yeast + cereal leaf + trout pellet (YCT) diet, fed at the uniform low ration used in standard methods for sediment toxicity tests; and 2) a new diet of diatoms + TetraMin flakes (DT), fed at increasing rations over time, that has been optimized for use in Hyalella water-only tests. Test endpoints included survival, weight, biomass, fecundity, and total young. Lethal effects of Pb were similar for the DT and YCT tests (20% lethal concentration [LC20] = 13 µg/L and 15 µg/L, respectively, as filterable Pb). In contrast, weight and fecundity endpoints were not significantly affected in the DT test at Pb concentrations up to 63 µg/L, but these endpoints were significantly reduced by Pb in the YCT test-and in a 2005 test in the same laboratory with a diet of conditioned Rabbit Chow (RC-2005). The fecundity and total young endpoints from the YCT and RC-2005 tests were considered unreliable because fecundity in controls did not meet test acceptability criteria, but both of these tests still produced lower Pb effect concentrations (for weight or biomass) than the test with the DT diet. The lowest biotic ligand model-normalized effect concentrations for the 3 tests ranged from 3.7 µg/L (weight 20% effect concentration [EC20] for the RC-2005 test) to 8.2 µg/L (total young EC20 for the DT test), values that would rank Hyalella as the second or third most sensitive of 13 genera in a species sensitivity distribution for chronic Pb toxicity. These results demonstrate that toxicity tests with Hyalella fed optimal diets can meet more stringent test acceptability criteria for control performance, but suggest that results of these tests may underestimate sublethal toxic effects of Pb to Hyalella under suboptimal feeding regimes. Environ Toxicol Chem 2016;35:1825-1834. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the United States of America.


Subject(s)
Amphipoda/drug effects , Diet , Lead/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/growth & development , Animals , Fertility/drug effects , Lead/analysis , Mass Spectrometry , Toxicity Tests, Chronic , Water Pollutants, Chemical/analysis
8.
Environ Toxicol Chem ; 35(1): 115-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26139383

ABSTRACT

The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1 mg K/L to 3 mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.


Subject(s)
Aquatic Organisms , Bivalvia/drug effects , Cladocera/drug effects , Cyprinidae , Fresh Water/analysis , Sulfates/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorides/toxicity , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Potassium/toxicity , Species Specificity , Toxicity Tests, Acute , Toxicity Tests, Chronic
9.
Environ Toxicol Chem ; 34(6): 1405-16, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25693486

ABSTRACT

Nonnative organisms in the ballast water of freshwater ships must be killed to prevent the spread of invasive species. The ideal ballast water treatment system (BWTS) would kill 100% of ballast water organisms with minimal residual toxicity to organisms in receiving waters. In the present study, the residual toxicity and chemistry of a BWTS was evaluated. Sodium hydroxide was added to elevate pH to >11.5 to kill ballast water organisms, then reduced to pH <9 by sparging with wet-scrubbed diesel exhaust (the source of CO2 ). Cladocerans (Ceriodaphnia dubia), amphipods (Hyalella azteca), and fathead minnows (Pimephales promelas) were exposed for 2 d to BWTS water under an air atmosphere (pH drifted to ≥9) or a 2.5% CO2 atmosphere (pH 7.5-8.2), then transferred to control water for 5 d to assess potential delayed toxicity. Chemical concentrations in the BWTS water met vessel discharge guidelines with the exception of concentrations of copper. There was little to no residual toxicity to cladocerans or fish, but the BWTS water was toxic to amphipods. Maintaining a neutral pH and diluting BWTS water by 50% eliminated toxicity to the amphipods. The toxicity of BWTS water would likely be minimal because of rapid dilution in the receiving water, with subsurface release likely preventing pH rise. This BWTS has the potential to become a viable method for treating ballast water released into freshwater systems.


Subject(s)
Aquatic Organisms/drug effects , Fresh Water/chemistry , Sodium Hydroxide/toxicity , Water Purification , Amphipoda/drug effects , Amphipoda/growth & development , Animals , Aquatic Organisms/growth & development , Carbon Dioxide/chemistry , Cladocera/drug effects , Cladocera/growth & development , Cyprinidae/growth & development , Fishes/growth & development , Hydrogen-Ion Concentration , Introduced Species , Polycyclic Aromatic Hydrocarbons/analysis , Ships , Sodium Bicarbonate/toxicity , Toxicity Tests , Water Quality
10.
Environ Toxicol Chem ; 34(3): 626-39, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25545632

ABSTRACT

Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms-amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)-in sediments from 2 lead-zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2-4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.


Subject(s)
Bivalvia/drug effects , Fresh Water , Geologic Sediments/chemistry , Lead/toxicity , Mining , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Amphipoda/drug effects , Amphipoda/growth & development , Animals , Biomass , Porosity , Principal Component Analysis , Toxicity Tests , United States , Water Pollutants, Chemical/analysis
11.
Environ Toxicol Chem ; 33(10): 2259-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25043712

ABSTRACT

The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model-normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Fishes/growth & development , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Cadmium/analysis , Copper/analysis , Oncorhynchus mykiss/growth & development , Water/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis
12.
Environ Toxicol Chem ; 33(10): 2246-58, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24862826

ABSTRACT

Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th-82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Fishes/physiology , Lead/toxicity , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Cadmium/analysis , Copper/analysis , Fresh Water/analysis , Larva , Lead/analysis , Oncorhynchus mykiss/physiology , United States , Washington , Water Pollutants, Chemical/analysis , Water Quality , Zinc/analysis
13.
Gen Comp Endocrinol ; 203: 215-224, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24694518

ABSTRACT

Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 µg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.


Subject(s)
Bass/genetics , Endocrine Disruptors/toxicity , Gene Expression Regulation/drug effects , Methylmercury Compounds/toxicity , Neurosecretory Systems/drug effects , Water Pollutants, Chemical/toxicity , Animals , Female , Florida , Male , Reproduction/drug effects
14.
Environ Toxicol Chem ; 32(11): 2507-19, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23983116

ABSTRACT

Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.), oligochaetes (Tubifex tubifex, Lumbriculus variegatus), mussels (Lampsilis siliquoidea), and midges (Chironomus dilutus, Chironomus riparius). In the second phase, tests were conducted with the most sensitive species in 6 additional spiked sediments, thus generating chronic toxicity data for a total of 8 nickel-spiked sediments. A species sensitivity distribution was elaborated based on 10% effective concentrations yielding a threshold value of 94 mg Ni/kg dry weight under reasonable worst-case conditions. Data from all sediments were used to model predictive bioavailability relationships between chronic toxicity thresholds (20% effective concentrations) and AVS and Fe, and these models were used to derive site-specific sediment-quality criteria. Normalization of toxicity values reduced the intersediment variability in toxicity values significantly for the amphipod species Hyalella azteca and G. pseudolimnaeus, but these relationships were less clearly defined for the mayfly Hexagenia sp. Application of the models to prevailing local conditions resulted in threshold values ranging from 126 mg to 281 mg Ni/kg dry weight, based on the AVS model, and 143 mg to 265 mg Ni/kg dry weight, based on the Fe model.


Subject(s)
Geologic Sediments/analysis , Invertebrates/drug effects , Nickel/toxicity , Toxicity Tests, Chronic/methods , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Bivalvia/drug effects , European Union , Fresh Water , Guidelines as Topic , Insecta/drug effects , Nickel/analysis , Oligochaeta/drug effects , Regression Analysis , Species Specificity , Uncertainty , Water Pollutants, Chemical/analysis
15.
Environ Toxicol Chem ; 32(11): 2495-506, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23657897

ABSTRACT

This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.


Subject(s)
Geologic Sediments/analysis , Invertebrates/drug effects , Nickel/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Bivalvia/drug effects , Fresh Water , Insecta/drug effects , Oligochaeta/drug effects , Species Specificity , Toxicity Tests, Chronic , United States
16.
Environ Toxicol Chem ; 32(11): 2482-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23657917

ABSTRACT

Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd ) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.


Subject(s)
Geologic Sediments/chemistry , Nickel/analysis , Toxicity Tests, Chronic/methods , Water Pollutants, Chemical/analysis , Animals , Fresh Water , Hydrogen-Ion Concentration , Insecta/drug effects , Nickel/toxicity , Oligochaeta/drug effects , Sulfides/analysis , Water Pollutants, Chemical/toxicity
17.
Arch Environ Contam Toxicol ; 64(1): 130-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23080409

ABSTRACT

The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 µg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 µg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 µg Se/g dw. Whole fish ranged from 3.92 to 7.10 µg Se/g dw, and gonads ranged from 6.91 to 31.84 µg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.


Subject(s)
Environmental Monitoring , Fishes/metabolism , Mercury/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Fishes/physiology , Idaho , Mercury/analysis , Mercury/toxicity , Selenium/analysis , Selenium/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Environ Toxicol Chem ; 32(1): 207-21, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23071077

ABSTRACT

Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels.


Subject(s)
Coal Mining , Geologic Sediments/chemistry , Natural Gas , Water Pollutants, Chemical/toxicity , Amphipoda/physiology , Animals , Chironomidae , Polycyclic Aromatic Hydrocarbons/toxicity , Tennessee , Toxicity Tests , Unionidae
19.
Arch Environ Contam Toxicol ; 63(4): 563-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22961179

ABSTRACT

Riffle-dwelling crayfish populations were sampled at 16 sites in 4 tributaries of the Spring River located within the Tri-State Mining District in southwest Missouri. Crayfish density, physical habitat quality, and water quality were examined at each site to assess the ecological effects of mining-derived metals on crayfish. Metals (lead, zinc, and cadmium) were analyzed in samples of surface water, sediment, detritus, and whole crayfish. Sites were classified a posteriori into reference, mining, and downstream sites primarily based on metal concentrations in the materials analyzed. Three species of crayfish (Orconectes neglectus neglectus, O. macrus, and O. virilis) were collected during the study; however, only O. n. neglectus was collected at all sites. Mean crayfish densities were significantly lower at mining sites than at reference sites. Mean concentrations of metals were significantly correlated among the materials analyzed and were significantly greater at mining and downstream sites than at reference sites. Principal component analyses showed a separation of sites due to an inverse relationship among crayfish density, metals concentrations, and physical habitat quality variables. Sediment probable-effects quotients and surface-water toxic unit scores were significantly correlated; both indicated risk of toxicity to aquatic biota at several sites. Metals concentrations in whole crayfish at several sites exceeded concentrations known to be toxic to carnivorous wildlife. Mining-derived metals have the potential to impair ecosystem function through decreased organic matter processing and nutrient cycling in streams due to decreased crayfish densities.


Subject(s)
Astacoidea/metabolism , Cadmium/analysis , Environmental Monitoring/methods , Lead/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis , Animals , Biota , Ecology , Ecosystem , Geologic Sediments/chemistry , Kansas , Mining , Missouri , Rivers/chemistry
20.
Ecotoxicol Environ Saf ; 74(8): 2215-24, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21868094

ABSTRACT

Crayfish (Orconectes spp.), Asian clam (Corbicula fluminea), northern hog sucker (hog sucker; Hypentelium nigricans), and smallmouth bass (smallmouth; Micropterus dolomieu) from streams in southeastern Missouri (USA) were analyzed for total mercury (HgT) and for stable isotopes of carbon (δ¹³C), nitrogen (δ¹5N), and sulfur (δ³4S) to discern Hg transfer pathways. HgT concentrations were generally lowest in crayfish (0.005-0.112 µg/g dw) and highest in smallmouth (0.093-4.041 µg/g dw), as was δ¹5N. HgT was also lower and δ¹5N was higher in all biota from a stream draining a more heavily populated historical lead-zinc mining area than from similar sites with mostly undeveloped forested watersheds. δ¹³C in biota was lowest at spring-influenced sites, reflecting CO2 inputs and temperature influences, and δ³4S increased from south to north in all taxa. However, HgT was not strongly correlated with either δ¹³C or δ³4S in biota. Trophic position (TP) computed from crayfish δ¹5N was lower in hog suckers (mean=2.8) than in smallmouth (mean=3.2), but not at all sites. HgT, δ¹³C, δ³4S, and TP in hog suckers increased with total length (length) at some sites, indicating site-specific ontogenetic diet shifts. Changes with length were less evident in smallmouth. Length-adjusted HgT site means in both species were strongly correlated with HgT in crayfish (r²=0.97, P<0.01), but not with HgT in Corbicula (r²=0.02, P>0.05). ANCOVA and regression models incorporating only TP and, for hog suckers, length, accurately and precisely predicted HgT concentrations in both fish species from all locations. Although low compared to many areas of the USA, HgT (and therefore methylmercury) concentrations in smallmouth and hog suckers are sufficiently high to represent a threat to human health and wildlife. Our data indicate that in Ozark streams, Hg concentrations in crayfish are at least partly determined by their diet, with concentrations in hog suckers, smallmouth, and possibly other higher-level consumers largely determined by concentrations in crayfish and other primary and secondary consumers, fish growth rates, and TP.


Subject(s)
Ecosystem , Environmental Monitoring , Mercury/metabolism , Rivers/chemistry , Water Pollutants, Chemical/metabolism , Animals , Astacoidea/metabolism , Bass/metabolism , Biota , Cypriniformes/metabolism , Fishes/metabolism , Humans , Mercury/analysis , Mining , Missouri , Water Pollutants, Chemical/analysis , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...