Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Nat Commun ; 15(1): 3120, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600106

ABSTRACT

Salmonella utilizes a type 3 secretion system to translocate virulence proteins (effectors) into host cells during infection1. The effectors modulate host cell machinery to drive uptake of the bacteria into vacuoles, where they can establish an intracellular replicative niche. A remarkable feature of Salmonella invasion is the formation of actin-rich protuberances (ruffles) on the host cell surface that contribute to bacterial uptake. However, the membrane source for ruffle formation and how these bacteria regulate membrane mobilization within host cells remains unclear. Here, we show that Salmonella exploits membrane reservoirs for the generation of invasion ruffles. The reservoirs are pre-existing tubular compartments associated with the plasma membrane (PM) and are formed through the activity of RAB10 GTPase. Under normal growth conditions, membrane reservoirs contribute to PM homeostasis and are preloaded with the exocyst subunit EXOC2. During Salmonella invasion, the bacterial effectors SipC, SopE2, and SopB recruit exocyst subunits from membrane reservoirs and other cellular compartments, thereby allowing exocyst complex assembly and membrane delivery required for bacterial uptake. Our findings reveal an important role for RAB10 in the establishment of membrane reservoirs and the mechanisms by which Salmonella can exploit these compartments during host cell invasion.


Subject(s)
Salmonella Infections , Salmonella typhimurium , Humans , Salmonella typhimurium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Salmonella Infections/microbiology , Cell Membrane/metabolism , Membranes/metabolism , HeLa Cells
2.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37311584

ABSTRACT

SLIT/ROBO signaling impacts many aspects of tissue development and homeostasis, in part, through the regulation of cell growth and proliferation. Recent studies have also linked SLIT/ROBO signaling to the regulation of diverse phagocyte functions. However, the mechanisms by which SLIT/ROBO signaling acts at the nexus of cellular growth control and innate immunity remain enigmatic. Here, we show that SLIT2-mediated activation of ROBO1 leads to inhibition of mTORC1 kinase activity in macrophages, leading to dephosphorylation of its downstream targets, including transcription factor EB and ULK1. Consequently, SLIT2 augments lysosome biogenesis, potently induces autophagy, and robustly promotes the killing of bacteria within phagosomes. Concordant with these results, we demonstrate decreased lysosomal content and accumulated peroxisomes in the spinal cords of embryos from Robo1 -/- , Robo2 -/- double knockout mice. We also show that impediment of auto/paracrine SLIT-ROBO signaling axis in cancer cells leads to hyperactivation of mTORC1 and inhibition of autophagy. Together, these findings elucidate a central role of chemorepellent SLIT2 in the regulation of mTORC1 activity with important implications for innate immunity and cancer cell survival.


Subject(s)
Nerve Tissue Proteins , Receptors, Immunologic , Animals , Mice , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Lysosomes , Bacteria , Mechanistic Target of Rapamycin Complex 1
3.
Cell Mol Life Sci ; 80(7): 183, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37338571

ABSTRACT

Peroxisomes are essential for mitochondrial health, as the absence of peroxisomes leads to altered mitochondria. However, it is unclear whether the changes in mitochondria are a function of preserving cellular function or a response to cellular damage caused by the absence of peroxisomes. To address this, we developed conditional hepatocyte-specific Pex16 deficient (Pex16 KO) mice that develop peroxisome loss and subjected them to a low-protein diet to induce metabolic stress. Loss of PEX16 in hepatocytes led to increased biogenesis of small mitochondria and reduced autophagy flux but with preserved capacity for respiration and ATP capacity. Metabolic stress induced by low protein feeding led to mitochondrial dysfunction in Pex16 KO mice and impaired biogenesis. Activation of PPARα partially corrected these mitochondrial disturbances, despite the absence of peroxisomes. The findings of this study demonstrate that the absence of peroxisomes in hepatocytes results in a concerted effort to preserve mitochondrial function, including increased mitochondrial biogenesis, altered morphology, and modified autophagy activity. Our study underscores the relationship between peroxisomes and mitochondria in regulating the hepatic metabolic responses to nutritional stressors.


Subject(s)
Organelle Biogenesis , Peroxisomes , Mice , Animals , Peroxisomes/metabolism , Mitochondria/metabolism , Liver/metabolism , Autophagy
5.
iScience ; 25(10): 105188, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36248734

ABSTRACT

Cell proliferation is dependent on growth factors insulin and IGF1. We sought to identify interactors of IRS1, the most proximal mediator of insulin/IGF1 signaling, that regulate cell proliferation. Using proximity-dependent biotin identification (BioID), we detected 40 proteins displaying proximal interactions with IRS1, including DCAF7 and its interacting partners DYRK1A and DYRK1B. In HepG2 cells, DCAF7 knockdown attenuated cell proliferation by inducing cell cycle arrest at G2. DCAF7 expression was required for insulin-stimulated AKT phosphorylation, and its absence promoted nuclear localization of the transcription factor FOXO1. DCAF7 knockdown induced expression of FOXO1-target genes implicated in G2 cell cycle inhibition, correlating with G2 cell cycle arrest. In Drosophila melanogaster, wing-specific knockdown of DCAF7/wap caused smaller wing size and lower wing cell number; the latter recovered upon double knockdown of wap and dfoxo. We propose that DCAF7 regulates cell proliferation and cell cycle via IRS1-FOXO1 signaling, of relevance to whole organism growth.

6.
Mol Biol Cell ; 33(12): ar106, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35921166

ABSTRACT

Endothelia determine blood-to-tissue solute delivery, yet glucose transit is poorly understood. To illuminate mechanisms, we tracked [3H]-2-deoxyglucose (2-DG) in human adipose-tissue microvascular endothelial cells. 2-DG uptake was largely facilitated by the glucose transporters GLUT1 and GLUT3. Once in the cytosol, >80% of 2-DG became phosphorylated and ∼20% incorporated into glycogen, suggesting that transported glucose is readily accessible to cytosolic enzymes. Interestingly, a fraction of intracellular 2-DG was released over time (15-20% over 30 min) with slower kinetics than for uptake, involving GLUT3. In contrast to intracellular 2-DG, the released 2-DG was largely unphosphorylated. Glucose release involved endoplasmic reticulum-resident translocases/phosphatases and was stimulated by adrenaline, consistent with participation of glycogenolysis and glucose dephosphorylation. Surprisingly, the fluorescent glucose derivative 2-NBD-glucose (2-NBDG) entered cells largely via fluid phase endocytosis and exited by recycling. 2-NBDG uptake was insensitive to GLUT1/GLUT3 inhibition, suggesting poor influx across membranes. 2-NBDG recycling, but not 2-DG efflux, was sensitive to N-ethyl maleimide. In sum, by utilizing radioactive and fluorescent glucose derivatives, we identified two parallel routes of entry: uptake into the cytosol through dedicated glucose transporters and endocytosis. This reveals the complex glucose handling by endothelial cells that may contribute to glucose delivery to tissues.


Subject(s)
Deoxyglucose , Endothelial Cells , Deoxyglucose/pharmacology , Epinephrine , Glucose/pharmacology , Glucose Transporter Type 1 , Glucose Transporter Type 3 , Glycogen , Humans , Maleimides , Phosphoric Monoester Hydrolases
7.
Microbiome ; 10(1): 127, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35965349

ABSTRACT

BACKGROUND: The emergence of antimicrobial resistance is a major threat to global health and has placed pressure on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut microbiome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, and/or timepoint, resulting in an inconsistent view of their impact on community composition. METHODS: In this study, we perform a systematic investigation of both the composition and function of the chicken gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were performed through metatranscriptomics analyses and metabolomics. RESULTS: Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial growth or produce metabolites that impact the host. CONCLUSIONS: As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation feed additives targeting gut health and poultry production. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/pharmacology , Chickens , DNA, Ribosomal , Dietary Supplements , Gastrointestinal Microbiome/genetics
8.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35511089

ABSTRACT

Non-canonical autophagy is a key cellular pathway in immunity, cancer, and neurodegeneration, characterized by conjugation of ATG8 to endolysosomal single membranes (CASM). CASM is activated by engulfment (endocytosis, phagocytosis), agonists (STING, TRPML1), and infection (influenza), dependent on K490 in the ATG16L1 WD40-domain. However, factors associated with non-canonical ATG16L1 recruitment and CASM induction remain unknown. Here, using pharmacological inhibitors, we investigate a role for V-ATPase during non-canonical autophagy. We report that increased V0-V1 engagement is associated with, and sufficient for, CASM activation. Upon V0-V1 binding, V-ATPase recruits ATG16L1, via K490, during LC3-associated phagocytosis (LAP), STING- and drug-induced CASM, indicating a common mechanism. Furthermore, during LAP, key molecular players, including NADPH oxidase/ROS, converge on V-ATPase. Finally, we show that LAP is sensitive to Salmonella SopF, which disrupts the V-ATPase-ATG16L1 axis and provide evidence that CASM contributes to the Salmonella host response. Together, these data identify V-ATPase as a universal regulator of CASM and indicate that SopF evolved in part to evade non-canonical autophagy.


Subject(s)
Autophagy-Related Proteins , Autophagy , Microtubule-Associated Proteins , Phagocytosis , Vacuolar Proton-Translocating ATPases , Autophagy-Related Proteins/metabolism , Cell Line , Humans , Microtubule-Associated Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
9.
Nat Cell Biol ; 24(5): 708-722, 2022 05.
Article in English | MEDLINE | ID: mdl-35484249

ABSTRACT

Despite their low abundance, phosphoinositides play a central role in membrane traffic and signalling. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are uniquely important, as they promote cell growth, survival and migration. Pathogenic organisms have developed means to subvert phosphoinositide metabolism to promote successful infection and their survival in host organisms. We demonstrate that PtdIns(3,4)P2 is a major product generated in host cells by the effectors of the enteropathogenic bacteria Salmonella and Shigella. Pharmacological, gene silencing and heterologous expression experiments revealed that, remarkably, the biosynthesis of PtdIns(3,4)P2 occurs independently of phosphoinositide 3-kinases. Instead, we found that the Salmonella effector SopB, heretofore believed to be a phosphatase, generates PtdIns(3,4)P2 de novo via a phosphotransferase/phosphoisomerase mechanism. Recombinant SopB is capable of generating PtdIns(3,4,5)P3 and PtdIns(3,4)P2 from PtdIns(4,5)P2 in a cell-free system. Through a remarkable instance of convergent evolution, bacterial effectors acquired the ability to synthesize 3-phosphorylated phosphoinositides by an ATP- and kinase-independent mechanism, thereby subverting host signalling to gain entry and even provoke oncogenic transformation.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Salmonella , Signal Transduction
10.
Blood ; 139(19): 2855-2870, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35357446

ABSTRACT

The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.


Subject(s)
Granulomatous Disease, Chronic , Lung , Macrophages, Alveolar , NADPH Oxidase 2 , Animals , Cytokines , Granulomatous Disease, Chronic/genetics , Homeostasis , Lung/physiology , Mice , Mice, Inbred C57BL , NADPH Oxidase 2/genetics
11.
Autophagy ; 18(5): 1174-1186, 2022 05.
Article in English | MEDLINE | ID: mdl-34524948

ABSTRACT

ABBREVIATIONS: BioID: proximity-dependent biotin identification; GO: gene ontology; OSBPL: oxysterol binding protein like; VAPA: VAMP associated protein A; VAPB: VAMP associated protein B and C.


Subject(s)
Autophagy , Macroautophagy , Humans
12.
Autophagy ; 18(4): 829-840, 2022 04.
Article in English | MEDLINE | ID: mdl-34432599

ABSTRACT

Depolarized mitochondria can be degraded via mitophagy, a selective form of autophagy. The RAB GTPase RAB7A was recently shown to play a key role in this process. RAB7A regulates late endocytic trafficking under normal growth conditions but is translocated to the mitochondrial surface following depolarization. However, how RAB7A activity is regulated during mitophagy is not understood. Here, using a proximity-dependent biotinylation approach (miniTurbo), we identified C5orf51 as a specific interactor of GDP-locked RAB7A. C5orf51 also interacts with the RAB7A guanine nucleotide exchange factor (GEF) complex members MON1 and CCZ1. In the absence of C5orf51, localization of RAB7A on depolarized mitochondria is compromised and the protein is degraded by the proteasome. Furthermore, depletion of C5orf51 also inhibited ATG9A recruitment to depolarized mitochondria. Together, these results indicate that C5orf51 is a positive regulator of RAB7A in its shuttling between late endosomes and mitochondria to enable mitophagy.Abbreviations: ATG9A: autophagy related 9A; Baf A1: bafilomycin A1; BioID: proximity-dependent biotin identification; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CCZ1: CCZ1 homolog, vacuolar protein trafficking and biogenesis associated; DQ-BSA: dye quenched-bovine serum albumin; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; KO: knockout; LRPPRC: leucine rich pentatricopeptide repeat containing; MG132: carbobenzoxy-Leu-Leu-leucinal; MON1: MON1 homolog, secretory trafficking associated; mtDNA: mitochondrial DNA; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RMC1: regulator of MON1-CCZ1; TBC1D15: TBC1 domain family member 15; TBC1D17: TBC1 domain family member 17; TOMM20: translocase of outer mitochondrial membrane 20; WDR91: WD repeat domain 91; WT: wild type.


Subject(s)
Autophagy , Mitophagy , Autophagy/physiology , DNA, Mitochondrial , Endosomes/metabolism , Guanine Nucleotide Exchange Factors , Mitophagy/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Sci Adv ; 7(45): eabi6442, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739317

ABSTRACT

Autophagy, an essential intracellular recycling process, is linked to the pathogenesis of various diseases including Crohn's disease (CD). Factors that lead to the development of impaired autophagy during intestinal inflammation remain largely unexplored. Here, we report the impact of the interaction between serotonin [5-hydroxytryptamine;(5-HT)] and autophagy in colitis in mouse and human studies. In mice, increased gut 5-HT inhibited autophagy and led to enhanced colitis susceptibility. Reciprocally, mice with reduced 5-HT exhibited up-regulated autophagy via the mammalian target of rapamycin pathway, which resulted in significantly decreased colitis. Deletion of autophagy gene, Atg7, in an epithelial-specific manner, in concert with reduced 5-HT, promoted the development of a colitogenic microbiota and abolished the protective effects conferred by reduced 5-HT. Notably, in control and patient peripheral blood mononuclear cells, we uncovered that 5-HT treatment inhibited autophagy. Our findings suggest 5-HT as a previously unidentified therapeutic target in intestinal inflammatory disorders such as CD that exhibits dysregulated autophagy.

14.
Sci Adv ; 7(40): eabj2485, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597140

ABSTRACT

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.

15.
Front Cell Dev Biol ; 9: 708431, 2021.
Article in English | MEDLINE | ID: mdl-34336862

ABSTRACT

Insulin is a paramount anabolic hormone that promotes energy-storage in adipose tissue, skeletal muscle and liver, and these responses are significantly attenuated in insulin resistance leading to type 2 diabetes. Contrasting with insulin's function, macroautophagy/autophagy is a physiological mechanism geared to the degradation of intracellular components for the purpose of energy production, building-block recycling or tissue remodeling. Given that both insulin action and autophagy are dynamic phenomena susceptible to the influence of nutrient availability, it is perhaps not surprising that there is significant interaction between these two major regulatory mechanisms. This review examines the crosstalk between autophagy and insulin action, with specific focus on dysregulated autophagy as a cause or consequence of insulin resistance.

16.
Nat Commun ; 12(1): 4707, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349110

ABSTRACT

Salmonella utilizes translocated virulence proteins (termed effectors) to promote host cell invasion. The effector SopD contributes to invasion by promoting scission of the plasma membrane, generating Salmonella-containing vacuoles. SopD is expressed in all Salmonella lineages and plays important roles in animal models of infection, but its host cell targets are unknown. Here we show that SopD can bind to and inhibit the small GTPase Rab10, through a C-terminal GTPase activating protein (GAP) domain. During infection, Rab10 and its effectors MICAL-L1 and EHBP1 are recruited to invasion sites. By inhibiting Rab10, SopD promotes removal of Rab10 and recruitment of Dynamin-2 to drive scission of the plasma membrane. Together, our study uncovers an important role for Rab10 in regulating plasma membrane scission and identifies the mechanism used by a bacterial pathogen to manipulate this function during infection.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Salmonella typhimurium/pathogenicity , rab GTP-Binding Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Dynamin II , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , HEK293 Cells , Humans , Salmonella typhimurium/metabolism , Vacuoles/metabolism , Vacuoles/microbiology , Virulence , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
17.
Nat Commun ; 12(1): 4999, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404769

ABSTRACT

The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Listeria/drug effects , Listeriosis/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Phagocytes/immunology , Phagocytes/microbiology , Animals , Disease Models, Animal , Host-Pathogen Interactions , Interferon Type I/metabolism , Listeria monocytogenes/immunology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagosomes/immunology , RAW 264.7 Cells , Transcriptome , Virulence Factors , Virus Internalization/drug effects
18.
BMC Biol ; 19(1): 71, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33849525

ABSTRACT

Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


Subject(s)
Cell Membrane , Homeostasis
19.
J Cell Sci ; 134(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33722976

ABSTRACT

Rab5 is required for macropinosome formation, but its site and mode of action remain unknown. We report that Rab5 acts at the plasma membrane, downstream of ruffling, to promote macropinosome sealing and scission. Dominant-negative Rab5, which obliterates macropinocytosis, had no effect on the development of membrane ruffles. However, Rab5-containing vesicles were recruited to circular membrane ruffles, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent endomembrane fusion was necessary for the completion of macropinocytosis. This fusion event coincided with the disappearance of PtdIns(4,5)P2 that accompanies macropinosome closure. Counteracting the depletion of PtdIns(4,5)P2 by expression of phosphatidylinositol-4-phosphate 5-kinase impaired macropinosome formation. Importantly, we found that the removal of PtdIns(4,5)P2 is dependent on Rab5, through the Rab5-mediated recruitment of the inositol 5-phosphatases OCRL and Inpp5b, via APPL1. Knockdown of OCRL and Inpp5b, or APPL1, prevented macropinosome closure without affecting ruffling. We therefore propose that Rab5 is essential for the clearance of PtdIns(4,5)P2 needed to complete the scission of macropinosomes or to prevent their back-fusion with the plasmalemma.


Subject(s)
Phosphatidylinositol 4,5-Diphosphate , Phosphatidylinositols , Inositol , Inositol Polyphosphate 5-Phosphatases , Pinocytosis
20.
Nat Commun ; 12(1): 724, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526784

ABSTRACT

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Subject(s)
Biosensing Techniques/methods , Gene Regulatory Networks/genetics , Glucose/analysis , Nucleic Acids/analysis , Point-of-Care Systems , Point-of-Care Testing , Biosensing Techniques/instrumentation , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glucose/metabolism , Humans , Nucleic Acids/genetics , Pandemics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Typhoid Fever/blood , Typhoid Fever/diagnosis , Typhoid Fever/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...