Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502108

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Subject(s)
Brain , Cerebrovascular Circulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Male , Female , Adult , Algorithms
2.
Diagnostics (Basel) ; 12(8)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36010205

ABSTRACT

Accurate quantification of perfusion is crucial for diagnosis and monitoring of kidney function. Arterial spin labeling (ASL), a completely non-invasive magnetic resonance imaging technique, is a promising method for this application. However, differences in acquisition (e.g., ASL parameters, readout) and processing (e.g., registration, segmentation) between studies impede the comparison of results. To alleviate challenges arising solely from differences in processing pipelines, synthetic data are of great value. In this work, synthetic renal ASL data were generated using body models from the XCAT phantom and perfusion was added using the general kinetic model. Our in-house developed processing pipeline was then evaluated in terms of registration, quantification, and segmentation using the synthetic data. Registration performance was evaluated qualitatively with line profiles and quantitatively with mean structural similarity index measures (MSSIMs). Perfusion values obtained from the pipeline were compared to the values assumed when generating the synthetic data. Segmentation masks obtained by semi-automated procedure of the processing pipeline were compared to the original XCAT organ masks using the Dice index. Overall, the pipeline evaluation yielded good results. After registration, line profiles were smoother and, on average, MSSIMs increased by 25%. Mean perfusion values for cortex and medulla were close to the assumed perfusion of 250 mL/100 g/min and 50 mL/100 g/min, respectively. Dice indices ranged 0.80-0.93, 0.78-0.89, and 0.64-0.84 for whole kidney, cortex, and medulla, respectively. The generation of synthetic ASL data allows flexible choice of parameters and the generated data are well suited for evaluation of processing pipelines.

3.
Magn Reson Med ; 87(3): 1605-1612, 2022 03.
Article in English | MEDLINE | ID: mdl-34652819

ABSTRACT

PURPOSE: To design and manufacture a pelvis phantom for magnetic resonance (MR)-guided prostate interventions, such as MRGB (MR-guided biopsy) or brachytherapy seed placement. METHODS: The phantom was designed to mimic the human pelvis incorporating bones, bladder, prostate with four lesions, urethra, arteries, veins, and six lymph nodes embedded in ballistic gelatin. A hollow rectum enables transrectal access to the prostate. To demonstrate the feasibility of the phantom for minimal invasive MRI-guided interventions, a targeted inbore MRGB was performed. The needle probe was rectally inserted and guided using an MRI-compatible remote controlled manipulator (RCM). RESULTS: The presented pelvis phantom has realistic imaging properties for MR imaging (MRI), computed tomography (CT) and ultrasound (US). In the targeted inbore MRGB, a prostate lesion was successfully hit with an accuracy of 3.5 mm. The experiment demonstrates that the limited size of the rectum represents a realistic impairment for needle placements. CONCLUSION: The phantom provides a valuable platform for evaluating the performance of MRGB systems. Interventionalists can use the phantom to learn how to deal with challenging situations, without risking harm to patients.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Pelvis/diagnostic imaging , Phantoms, Imaging , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging
4.
MAGMA ; 35(3): 365-373, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34661789

ABSTRACT

OBJECTIVE: There is a pressing need to assess user-dependent reproducibility of multi-fibre probabilistic tractography in order to encourage clinical implementation of these advanced and relevant approaches. The goal of this study was to evaluate both intrinsic and inter-user reproducibility of corticospinal tract estimation. MATERIALS AND METHODS: Six clinical datasets including motor functional and diffusion MRI were used. Three users performed an independent tractography analysis following identical instructions. Dice indices were calculated to quantify the reproducibility of seed region, fMRI-based end region, and streamline maps. RESULTS: The inter-user reproducibility ranged 41-93%, 29-94%, and 50-92%, for seed regions, end regions, and streamline maps, respectively. Differences in streamline maps correlated with differences in seed and end regions. Good inter-user agreement in seed and end regions, yielded inter-user reproducibility close to the intrinsic reproducibility (92-97%) and in most cases higher than 80%. DISCUSSION: Uncertainties related to user-dependent decisions and the probabilistic nature of the analysis should be considered when interpreting probabilistic tractography data. The standardization of the methods used to define seed and end regions is a necessary step to improve the accuracy and robustness of multi-fiber probabilistic tractography in a clinical setting. Clinical users should choose a feasible compromise between reproducibility and analysis duration.


Subject(s)
White Matter , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Pyramidal Tracts/diagnostic imaging , Reproducibility of Results , White Matter/diagnostic imaging
5.
PLoS One ; 15(3): e0230129, 2020.
Article in English | MEDLINE | ID: mdl-32163517

ABSTRACT

The assessment of language lateralization has become widely used when planning neurosurgery close to language areas, due to individual specificities and potential influence of brain pathology. Functional magnetic resonance imaging (fMRI) allows non-invasive and quantitative assessment of language lateralization for presurgical planning using a laterality index (LI). However, the conventional method is limited by the dependence of the LI on the chosen activation threshold. To overcome this limitation, different threshold-independent LI calculations have been reported. The purpose of this study was to propose a simplified approach to threshold-independent LI calculation and compare it with three previously reported methods on the same cohort of subjects. Fifteen healthy subjects, who performed picture naming, verb generation, and word fluency tasks, were scanned. LI values were calculated for all subjects using four methods, and considering either the whole hemisphere or an atlas-defined language area. For each method, the subjects were ranked according to the calculated LI values, and the obtained rankings were compared. All LI calculation methods agreed in differentiating strong from weak lateralization on both hemispheric and regional scales (Spearman's correlation coefficients 0.59-1.00). In general, a more lateralized activation was found in the language area than in the whole hemisphere. The new method is well suited for application in the clinical practice as it is simple to implement, fast, and robust. The good agreement between LI calculation methods suggests that the choice of method is not key. Nevertheless, it should be consistent to allow a relative comparison of language lateralization between subjects.


Subject(s)
Brain/physiology , Functional Laterality/physiology , Adult , Brain Mapping/methods , Cohort Studies , Female , Humans , Language , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurosurgery/methods , Young Adult
6.
Magn Reson Med ; 83(6): 1940-1948, 2020 06.
Article in English | MEDLINE | ID: mdl-31900983

ABSTRACT

PURPOSE: To evaluate the use of magnetic resonance fingerprinting (MRF) for simultaneous quantification of T1 and T2∗ in a single breath-hold in the kidneys. METHODS: The proposed kidney MRF sequence was based on MRF echo-planar imaging. Thirty-five measurements per slice and overall 4 slices were measured in 15.4 seconds. Group matching was performed for in-line quantification of T1 and T2∗ . Images were acquired in a phantom and 8 healthy volunteers in coronal orientation. To evaluate our approach, region of interests were drawn in the kidneys to calculate mean values and standard deviations of the T1 and T2∗ times. Precision was calculated across multiple repeated MRF scans. Gaussian filtering is applied on baseline images to improve SNR and match stability. RESULTS: T1 and T2∗ times acquired with MRF in the phantom showed good agreement with reference measurements and conventional mapping methods with deviations of less than 5% for T1 and less than 10% for T2∗ . Baseline images in vivo were free of artifacts and relaxation times yielded good agreement with conventional methods and literature (deviation T1:7±4% , T2∗:6±3% ). CONCLUSIONS: In this feasibility study, the proposed renal MRF sequence resulted in accurate T1 and T2∗ quantification in a single breath-hold.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Brain , Humans , Kidney/diagnostic imaging , Magnetic Resonance Spectroscopy , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...