Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Nat Commun ; 15(1): 5480, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956017

ABSTRACT

The primary obstacle to curing HIV-1 is a reservoir of CD4+ cells that contain stably integrated provirus. Previous studies characterizing the proviral landscape, which have been predominantly conducted in males in the United States and Europe living with HIV-1 subtype B, have revealed that most proviruses that persist during antiretroviral therapy (ART) are defective. In contrast, less is known about proviral landscapes in females with non-B subtypes, which represents the largest group of individuals living with HIV-1. Here, we analyze genomic DNA from resting CD4+ T-cells from 16 female and seven male Ugandans with HIV-1 receiving suppressive ART (n = 23). We perform near-full-length proviral sequencing at limiting dilution to examine the proviral genetic landscape, yielding 607 HIV-1 subtype A1, D, and recombinant proviral sequences (mean 26/person). We observe that intact genomes are relatively rare and clonal expansion occurs in both intact and defective genomes. Our modification of the primers and probes of the Intact Proviral DNA Assay (IPDA), developed for subtype B, rescues intact provirus detection in Ugandan samples for which the original IPDA fails. This work will facilitate research on HIV-1 persistence and cure strategies in Africa, where the burden of HIV-1 is heaviest.


Subject(s)
CD4-Positive T-Lymphocytes , Genome, Viral , HIV Infections , HIV-1 , Proviruses , Humans , HIV-1/genetics , HIV-1/drug effects , HIV-1/classification , Proviruses/genetics , HIV Infections/drug therapy , HIV Infections/virology , Male , Female , Genome, Viral/genetics , CD4-Positive T-Lymphocytes/virology , Adult , DNA, Viral/genetics , Uganda , Viral Load , Anti-HIV Agents/therapeutic use
2.
Res Sq ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947061

ABSTRACT

Hypermutated proviruses, which arise in a single HIV replication cycle when host antiviral APOBEC3 proteins introduce extensive G-to-A mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). But, the within-host evolutionary origins of hypermutated sequences are incompletely understood because phylogenetic inference algorithms, which assume that mutations gradually accumulate over generations, incorrectly reconstruct their ancestor-descendant relationships. Using > 1400 longitudinal single-genome-amplified HIV env-gp120 sequences isolated from six women over a median 18 years of follow-up - including plasma HIV RNA sequences collected over a median 9 years between seroconversion and ART initiation, and > 500 proviruses isolated over a median 9 years on ART - we evaluated three approaches for removing hypermutation from nucleotide alignments. Our goals were to 1) reconstruct accurate phylogenies that can be used for molecular dating and 2) phylogenetically infer the integration dates of hypermutated proviruses persisting during ART. Two of the tested approaches (stripping all positions containing putative APOBEC3 mutations from the alignment, or replacing individual putative APOBEC3 mutations in hypermutated sequences with the ambiguous base R) consistently normalized tree topologies, eliminated erroneous clustering of hypermutated proviruses, and brought env-intact and hypermutated proviruses into comparable ranges with respect to multiple tree-based metrics. Importantly, these corrected trees produced integration date estimates for env-intact proviruses that were highly concordant with those from benchmark trees that excluded hypermutated sequences, indicating that the corrected trees can be used for molecular dating. Use of these trees to infer the integration dates of hypermutated proviruses persisting during ART revealed that these spanned a wide age range, with the oldest ones dating to shortly after infection. This indicates that hypermutated proviruses, like other provirus types, begin to be seeded into the proviral pool immediately following infection, and can persist for decades. In two of the six participants, hypermutated proviruses differed from env-intact ones in terms of their age distributions, suggesting that different provirus types decay at heterogeneous rates in some hosts. These simple approaches to reconstruct hypermutated provirus' evolutionary histories, allow insights into their in vivo origins and longevity, towards a more comprehensive understanding of HIV persistence during ART.

3.
Front Virol ; 42024 May 29.
Article in English | MEDLINE | ID: mdl-38883214

ABSTRACT

HIV-1 group M (HIV-1M) lineages downregulate HLA-I and CD4 expression via their Nef proteins. We hypothesized that these Nef functions may be partially responsible for the differences in prevalence of viruses from different lineages that co-circulate within an epidemic. Here, we characterized these two Nef activities in HIV-1M isolates from Cameroon, where multiple variants have been circulating since the pandemic's origin. Single HIV-1 Nef clones from 234 HIV-1-ART naïve individuals living in remote villages and two cosmopolitan cities of Cameroon, sampled between 2000 and 2013, were isolated from plasma HIV RNA and analyzed for their capacity to downregulate HLA-I and CD4 molecules. We found that, despite a large degree of within- and inter- lineage variation, the ability of Nef to downregulate HLA-I was similar across these different viruses. Moreover, Nef-mediated CD4 downregulation activity was also well conserved across the different lineages found in Cameroon. In addition, we observed a trend towards higher HLA-I downregulation activity of viruses circulating in the cosmopolitan cities versus the remote villages, whereas the CD4 downregulation activities were similar across the two settings. Furthermore, we noted a significant decline of HLA-I downregulation activity from 2000 to 2013, providing additional evidence supporting the attenuation of the global HIV-1M population over time. Finally, we identified 18 amino acids associated with differential HLA-I downregulation and 13 amino acids associated with differential CD4 downregulation within the dominant CRF02_AG lineage. Our lack of observation of HIV lineage-related differences in Nef-mediated HLA-I and CD4 downregulation function suggests that these activities do not substantively influence the prevalence of different HIV-1M lineages in Cameroon.

4.
Vaccines (Basel) ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38793698

ABSTRACT

COVID-19 breakthrough infection (BTI) can occur despite vaccination. Using a multi-centre, prospective, observational Canadian cohort of people with HIV (PWH) receiving ≥2 COVID-19 vaccines, we compared the SARS-CoV-2 spike (S) and receptor-binding domain (RBD)-specific IgG levels 3 and 6 months post second dose, as well as 1 month post third dose, in PWH with and without BTI. BTI was defined as positivity based on self-report measures (data up to last study visit) or IgG data (up to 1 month post dose 3). The self-report measures were based on their symptoms and either a positive PCR or rapid antigen test. The analysis was restricted to persons without previous COVID-19 infection. Persons without BTI remained COVID-19-naïve until ≥3 months following the third dose. Of 289 participants, 92 developed BTI (31.5 infections per 100 person-years). The median days between last vaccination and BTI was 128 (IQR 67, 176), with the most cases occurring between the third and fourth dose (n = 59), corresponding to the Omicron wave. In analyses adjusted for age, sex, race, multimorbidity, hypertension, chronic kidney disease, diabetes and obesity, a lower IgG S/RBD (log10 BAU/mL) at 1 month post dose 3 was significantly associated with BTI, suggesting that a lower IgG level at this time point may predict BTI in this cohort of PWH.

5.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793543

ABSTRACT

People living with HIV (PLWH) can exhibit impaired immune responses to vaccines. Accumulating evidence indicates that PLWH, particularly those receiving antiretroviral therapy, mount strong antibody responses to COVID-19 vaccines, but fewer studies have examined cellular immune responses to the vaccinations. Here, we used an activation-induced marker (AIM) assay to quantify SARS-CoV-2 spike-specific CD4+ and CD8+ T cells generated by two and three doses of COVID-19 vaccines in 50 PLWH receiving antiretroviral therapy, compared to 87 control participants without HIV. In a subset of PLWH, T-cell responses were also assessed after post-vaccine breakthrough infections and/or receipt of a fourth vaccine dose. All participants remained SARS-CoV-2 infection-naive until at least one month after their third vaccine dose. SARS-CoV-2 infection was determined by seroconversion to a Nucleocapsid (N) antigen, which occurred in 21 PLWH and 38 control participants after the third vaccine dose. Multivariable regression analyses were used to investigate the relationships between sociodemographic, health- and vaccine-related variables, vaccine-induced T-cell responses, and breakthrough infection risk. We observed that a third vaccine dose boosted spike-specific CD4+ and CD8+ T-cell frequencies significantly above those measured after the second dose (all p < 0.0001). Median T-cell frequencies did not differ between PLWH and controls after the second dose (p > 0.1), but CD8+ T-cell responses were modestly lower in PLWH after the third dose (p = 0.02), an observation that remained significant after adjusting for sociodemographic, health- and vaccine-related variables (p = 0.045). In PLWH who experienced a breakthrough infection, median T-cell frequencies increased even higher than those observed after three vaccine doses (p < 0.03), and CD8+ T-cell responses in this group remained higher even after a fourth vaccine dose (p = 0.03). In multivariable analyses, the only factor associated with an increased breakthrough infection risk was younger age, which is consistent with the rapid increase in SARS-CoV-2 seropositivity that was seen among younger adults in Canada after the initial appearance of the Omicron variant. These results indicate that PLWH receiving antiretroviral therapy mount strong T-cell responses to COVID-19 vaccines that can be enhanced by booster doses or breakthrough infection.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , HIV Infections , SARS-CoV-2 , Humans , Male , HIV Infections/immunology , HIV Infections/drug therapy , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Middle Aged , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , CD8-Positive T-Lymphocytes/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Aged , Immunity, Cellular , Breakthrough Infections
6.
Antimicrob Agents Chemother ; 68(3): e0107223, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38319085

ABSTRACT

Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.


Subject(s)
HIV-1 , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/pharmacology , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Cyclins/metabolism , Cyclins/pharmacology
7.
J Virol ; 98(2): e0165523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38214547

ABSTRACT

Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.


Subject(s)
HIV Infections , HIV-1 , Proviruses , Child , Female , Humans , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , Proviruses/genetics , Viral Load , Virus Integration
8.
AIDS ; 38(8): 1120-1130, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38224350

ABSTRACT

OBJECTIVE: The immunogenic nature of coronavirus disease 2019 (COVID-19) mRNA vaccines led to some initial concern that these could stimulate the HIV reservoir. We analyzed changes in plasma HIV loads (pVL) and reservoir size following COVID-19 mRNA vaccination in 62 people with HIV (PWH) receiving antiretroviral therapy (ART), and analyzed province-wide trends in pVL before and after the mass vaccination campaign. DESIGN: Longitudinal observational cohort and province-wide analysis. METHODS: Sixty-two participants were sampled prevaccination, and one month after their first and second COVID-19 immunizations. Vaccine-induced anti-SARS-CoV-2-Spike antibodies in serum were measured using the Roche Elecsys Anti-S assay. HIV reservoirs were quantified using the intact proviral DNA assay; pVL were measured using the cobas 6800 (lower limit of quantification: 20 copies/ml). The province-wide analysis included all 290 401 pVL performed in British Columbia, Canada between 2012 and 2022. RESULTS: Prevaccination, the median intact reservoir size was 77 [interquartile range (IQR): 20-204] HIV copies/million CD4 + T-cells, compared to 74 (IQR: 27-212) and 65 (IQR: 22-174) postfirst and -second dose, respectively (all comparisons P > 0.07). Prevaccination, 82% of participants had pVL <20 copies/ml (max: 110 copies/ml), compared to 79% postfirst dose (max: 183 copies/ml) and 85% postsecond dose (max: 79 copies/ml) ( P  > 0.4). There was no evidence that the magnitude of the vaccine-elicited anti-SARS-CoV-2-Spike immune response influenced pVL nor changes in reservoir size ( P  > 0.6). We found no evidence linking the COVID-19 mass vaccination campaign to population-level increases in detectable pVL frequency among all PWH in the province, nor among those who maintained pVL suppression on ART. CONCLUSION: We found no evidence that COVID-19 mRNA vaccines induced changes in HIV reservoir size nor plasma viremia.


Subject(s)
COVID-19 Vaccines , COVID-19 , HIV Infections , SARS-CoV-2 , Viral Load , Viremia , Humans , HIV Infections/drug therapy , HIV Infections/prevention & control , Male , Female , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Adult , SARS-CoV-2/immunology , Longitudinal Studies , Antibodies, Viral/blood , British Columbia , Vaccination , Disease Reservoirs/virology
9.
mBio ; : e0241723, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971267

ABSTRACT

IMPORTANCE: Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.

10.
Pathog Immun ; 8(1): 117-135, 2023.
Article in English | MEDLINE | ID: mdl-38035132

ABSTRACT

Introduction: While older adults generally mount weaker antibody responses to a primary COVID-19 vaccine series, T-cell responses remain less well characterized in this population. We compared SARS-CoV-2 spike-specific T-cell responses after 2- and 3-dose COVID-19 mRNA vaccination and subsequent breakthrough infection in older and younger adults. Methods: We quantified CD4+ and CD8+ T-cells reactive to overlapping peptides spanning the ancestral SARS-CoV-2 spike protein in 40 older adults (median age 79) and 50 younger health care workers (median age 39), all COVID-19 naive, using an activation-induced marker assay. T-cell responses were further assessed in 24 participants, including 8 older adults, who subsequently experienced their first SARS-CoV-2 breakthrough infection. Results: A third COVID-19 mRNA vaccine dose significantly boosted spike-specific CD4+ and CD8+ T-cell frequencies to above 2-dose levels in older and younger adults. T-cell frequencies did not significantly differ between older and younger adults after either dose. Multivariable analyses adjusting for sociodemographic, health, and vaccine-related variables confirmed that older age was not associated with impaired cellular responses. Instead, the strongest predictors of CD4+ and CD8+ T-cell frequencies post-third-dose were their corresponding post-second-dose frequencies. Breakthrough infection significantly increased both CD4+ and CD8+ T-cell frequencies, to comparable levels in older and younger adults. Exploratory analyses revealed an association between HLA-A*02:03 and higher post-vaccination CD8+ T-cell frequencies, which may be attributable to numerous strong-binding HLA-A*02:03-specific CD8+ T-cell epitopes in the spike protein. Conclusion: Older adults mount robust T-cell responses to 2- and 3-dose COVID-19 mRNA vaccination, which are further boosted following breakthrough infection.

11.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957382

ABSTRACT

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Male , Female , HIV-1/genetics , Viremia , Proviruses/genetics , Proviruses/metabolism , HIV Infections/drug therapy , CD4-Positive T-Lymphocytes , RNA, Viral , Viral Load
12.
medRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873490

ABSTRACT

Objective: The immunogenic nature of COVID-19 mRNA vaccines led to some initial concern that these could stimulate the HIV reservoir. We analyzed changes in plasma HIV loads (pVL) and reservoir size following COVID-19 mRNA vaccination in 62 people with HIV (PWH) receiving antiretroviral therapy (ART), and analyzed province-wide trends in pVL before and after the mass vaccination campaign. Design: Longitudinal observational cohort and province-wide analysis. Methods: 62 participants were sampled pre-vaccination, and one month after their first and second COVID-19 immunizations. Vaccine-induced anti-SARS-CoV-2-Spike antibodies in serum were measured using the Roche Elecsys Anti-S assay. HIV reservoirs were quantified using the Intact Proviral DNA Assay; pVL were measured using the cobas 6800 (LLOQ:20 copies/mL). The province-wide analysis included all 290,401 pVL performed in British Columbia, Canada between 2012-2022. Results: Pre-vaccination, the median intact reservoir size was 77 (IQR:20-204) HIV copies/million CD4+ T-cells, compared to 74 (IQR:27-212) and 65 (IQR:22-174) post-first and -second dose, respectively (all comparisons p>0.07). Pre-vaccination, 82% of participants had pVL<20 copies/mL (max:110 copies/mL), compared to 79% post-first dose (max:183 copies/mL) and 85% post-second dose (max:79 copies/mL) (p>0.4). The magnitude of the vaccine-elicited anti-SARS-CoV-2-Spike antibody response did not correlate with changes in reservoir size nor detectable pVL frequency (p>0.6). We found no evidence linking the COVID-19 mass vaccination campaign to population-level increases in detectable pVL frequency among all PWH in the province, nor among those who maintained pVL suppression on ART. Conclusion: We found no evidence that COVID-19 mRNA vaccines induced changes in HIV reservoir size nor plasma viremia.

13.
J Virol ; 97(9): e0092323, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37671866

ABSTRACT

Latent HIV-1 provirus represents the barrier toward a cure for infection and is dependent upon the host RNA Polymerase (Pol) II machinery for reemergence. Here, we find that inhibitors of the RNA Pol II mediator kinases CDK8/19, Senexin A and BRD6989, inhibit induction of HIV-1 expression in response to latency-reversing agents and T cell signaling agonists. These inhibitors were found to impair recruitment of RNA Pol II to the HIV-1 LTR. Furthermore, HIV-1 expression in response to several latency reversal agents was impaired upon disruption of CDK8 by shRNA or gene knockout. However, the effects of CDK8 depletion did not entirely mimic CDK8/19 kinase inhibition suggesting that the mediator kinases are not functionally redundant. Additionally, treatment of CD4+ peripheral blood mononuclear cells isolated from people living with HIV-1 and who are receiving antiretroviral therapy with Senexin A inhibited induction of viral replication in response to T cell stimulation by PMA and ionomycin. These observations indicate that the mediator kinases, CDK8 and CDK19, play a significant role for regulation of HIV-1 transcription and that small molecule inhibitors of these enzymes may contribute to therapies designed to promote deep latency involving the durable suppression of provirus expression. IMPORTANCE A cure for HIV-1 infection will require novel therapies that can force elimination of cells that contain copies of the virus genome inserted into the cell chromosome, but which is shut off, or silenced. These are known as latently-infected cells, which represent the main reason why current treatment for HIV/AIDS cannot cure the infection because the virus in these cells is unaffected by current drugs. Our results indicate that chemical inhibitors of Cdk8 also inhibit the expression of latent HIV provirus. Cdk8 is an important enzyme that regulates the expression of genes in response to signals to which cells need to respond and which is produced by a gene that is frequently mutated in cancers. Our observations indicate that Cdk8 inhibitors may be employed in novel therapies to prevent expression from latent provirus, which might eventually enable infected individuals to cease treatment with antiretroviral drugs.

14.
Cell Rep ; 42(9): 113053, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37676762

ABSTRACT

HIV persists in tissues during antiretroviral therapy (ART), but the relative contribution of different anatomical compartments to the viral reservoir in humans remains unknown. We performed an extensive characterization of HIV reservoirs in two men who donated their bodies to HIV cure research and who had been on suppressive ART for years. HIV DNA is detected in all tissues, with large variations across anatomical compartments and between participants. Intact HIV genomes represent 2% and 25% of all proviruses in the two participants and are mainly detected in secondary lymphoid organs, with the spleen and mediastinal lymph nodes harboring intact viral genomes in both individuals. Multiple copies of identical HIV genomes are found in all tissues, indicating that clonal expansions are common in anatomical sites. The majority (>85%) of these expanded clones are shared across multiple tissues. These findings suggest that infected cells expand, migrate, and possibly circulate between anatomical sites.


Subject(s)
Anti-Retroviral Agents , HIV Infections , Male , Humans , Anti-Retroviral Agents/therapeutic use , Proviruses/genetics , Clone Cells , Lymph Nodes , CD4-Positive T-Lymphocytes , Viral Load/genetics
15.
Res Sq ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645749

ABSTRACT

Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.

16.
AIDS ; 37(12): F25-F35, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37534695

ABSTRACT

OBJECTIVES: Many vaccines require higher/additional doses or adjuvants to provide adequate protection for people with HIV (PWH). Here, we compare coronavirus disease 2019 (COVID-19) vaccine-induced antibody neutralization capacity in PWH vs. HIV-negative individuals following two vaccine doses. DESIGN: In Canadian prospective observational cohorts, including a multicentre study of PWH receiving at least two COVID-19 vaccinations (mRNA or ChAdOx1-S), and a parallel study of HIV-negative controls (Stop the Spread Ottawa Cohort), we measured vaccine-induced neutralization capacity 3 months post dose 2 (±1 month). METHODS: COVID-19 neutralization efficiency was measured by calculating the half maximal inhibitory dilution (ID50) using a high-throughput protein-based neutralization assay for Ancestral (Wuhan), Delta and Omicron (BA.1) spike variants. Univariable and multivariable quantile regression were used to compare COVID-19-specific antibody neutralization capacity by HIV status. RESULTS: Neutralization assays were performed on 256 PWH and 256 controls based on specimen availability at the timepoint of interest, having received two vaccines and known date of vaccination. There was a significant interaction between HIV status and previous COVID-19 infection status in median ID50. There were no differences in median ID50 for HIV+ vs. HIV-negative persons without past COVID-19 infection. For participants with past COVID-19 infection, median ICD50 was significantly higher in controls than in PWH for ancestral SARS-CoV-2 and Omicron variants, with a trend for the Delta variant in the same direction. CONCLUSION: Vaccine-induced SARS-CoV-2 neutralization capacity was similar between PWH vs. HIV-negative persons without past COVID-19 infection, demonstrating favourable humoral-mediated immunogenicity. Both HIV+ and HIV-negative persons demonstrated hybrid immunity. TRIAL REGISTRATION: clinicaltrials.gov NCT04894448.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19/prevention & control , SARS-CoV-2 , Canada/epidemiology , HIV Infections/complications , Antibodies , Vaccination , COVID-19 Vaccines , Antibodies, Viral , Antibodies, Neutralizing
17.
Article in English | MEDLINE | ID: mdl-37126090

ABSTRACT

Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.

18.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090500

ABSTRACT

In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.

19.
medRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034605

ABSTRACT

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

20.
Retrovirology ; 20(1): 3, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004071

ABSTRACT

BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics.


Subject(s)
HIV Infections , HIV-1 , Humans , Down-Regulation , HIV-1/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...