Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biol Methods Protoc ; 8(1): bpad013, 2023.
Article in English | MEDLINE | ID: mdl-37521110

ABSTRACT

The house sparrow (Passer domesticus) is a valuable avian model for studying evolutionary genetics, development, neurobiology, physiology, behavior, and ecology, both in laboratory and field-based settings. The current annotation of the P. domesticus genome available at the Ensembl Rapid Release site is primarily focused on gene set building and lacks functional information. In this study, we present the first comprehensive functional reannotation of the P. domesticus genome using intestinal Illumina RNA sequencing (RNA-Seq) libraries. Our revised annotation provides an expanded view of the genome, encompassing 38592 transcripts compared to the current 23574 transcripts in Ensembl. We also predicted 14717 protein-coding genes, achieving 96.4% completeness for Passeriformes lineage BUSCOs. A substantial improvement in this reannotation is the accurate delineation of untranslated region (UTR) sequences. We identified 82.7% and 93.8% of the transcripts containing 5'- and 3'-UTRs, respectively. These UTR annotations are crucial for understanding post-transcriptional regulatory processes. Our findings underscore the advantages of incorporating additional specific RNA-Seq data into genome annotation, particularly when leveraging fast and efficient data processing capabilities. This functional reannotation enhances our understanding of the P. domesticus genome, providing valuable resources for future investigations in various research fields.

2.
Physiol Biochem Zool ; 95(4): 340-349, 2022.
Article in English | MEDLINE | ID: mdl-35622439

ABSTRACT

AbstractTrehalose is a nonreducing disaccharide that is a primary storage and energy source in prokaryotes, yeasts, fungi, and invertebrates. Vertebrates digest trehalose with the intestinal brush border membrane (BBM) enzyme trehalase. Intestinal trehalase activity is reported to be either very low or absent in several bird species. We assayed trehalase activity in 19 avian species, used proteomic analysis to quantify its abundance in the intestinal BBM, and used analyses of available genomes to detect the presence of the gene that codes for trehalase (Treh). We found no intestinal trehalase activity in birds, trehalase was absent from the proteome of their intestinal BBM, and the gene coding for trehalase was absent in their genomes. Surveys of available transcriptomes support the hypothesis that Treh is absent in birds. The trehalase gene was found in the same conserved syntenic block within the genome of all vertebrates surveyed except birds. Our analysis suggests that Treh was lost in an inversion followed by a reinsertion of a large gene block. This event appears to have taken place after the split between crocodiles and birds and dinosaurs. Birds are unable to digest a common dietary sugar like trehalose because their ancestor lost the trehalase gene. The loss of this gene seems to represent an ecological cost, as insectivorous birds seem to be unable to digest a carbohydrate present in their prey. We also speculate that the paucity of mycophagy in birds is due to the presence of large amounts of this sugar in fungal tissues.


Subject(s)
Trehalase , Trehalose , Animals , Birds , Digestion , Proteomics , Trehalase/genetics , Vertebrates
3.
J Exp Biol ; 224(Pt 3)2021 02 03.
Article in English | MEDLINE | ID: mdl-33288529

ABSTRACT

Although dietary flexibility in digestive enzyme activity (i.e. reaction rate) is widespread in vertebrates, mechanisms are poorly understood. When laboratory rats are switched to a higher protein diet, the activities of apical intestinal peptidases increase within 15 h, in some cases by rapid increase in enzyme transcription followed by rapid translation and translocation to the intestine's apical, brush-border membrane (BBM). Focusing on aminopeptidase-N (APN), we studied intestinal digestive enzyme flexibility in birds, relying on activity and mRNA data from the same animals. Our model was nestling house sparrows (Passer domesticus), already known to modulate intestinal peptidase activity when switching between lower and higher protein diets. Twenty-four hours after a switch from an adequate, lower protein diet to a higher protein diet, APN activity was increased in both whole intestinal tissue homogenates and in isolated BBM, but not at 12 h post-diet switch. Twenty-four hours after a reverse switch back to the lower protein diet, APN activity was decreased, but not at 12 h post-diet switch. Changes in APN activity in both diet switch experiments were associated with parallel changes in APN mRNA. Although transcriptional changes seem to be an important mechanism underlying dietary modulation of intestinal peptidase in both nestling house sparrows and laboratory rodents, the time course for modulation in nestlings seemed slower (taking approximately twice as long) compared with laboratory rodents. It may be ecologically advantageous if nestlings biochemically restructure their gut in response to a sustained increase in insects and protein intake rather than one or a few lucky insect meals.


Subject(s)
Sparrows , Animals , Dietary Proteins , Digestion , Peptide Hydrolases , RNA, Messenger/genetics
4.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R195-R202, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33175589

ABSTRACT

Dietary flexibility in digestive enzyme activity is widespread in vertebrates but mechanisms are poorly understood. When laboratory rats are switched to a higher carbohydrate diet, the activities of the apical intestinal α-glucosidases (AGs) increase within 6-12 h, mainly by rapid increase in enzyme transcription, followed by rapid translation and translocation to the intestine's apical, brush-border membrane (BBM). We performed the first unified study of the overall process in birds, relying on activity, proteomic, and transcriptomic data from the same animals. Our avian model was nestling house sparrows (Passer domesticus), which switch naturally from a low-starch insect diet to a higher starch seed diet and in whom the protein sucrase-isomaltase (SI) is responsible for all maltase and sucrase intestinal activities. Twenty-four hours after the switch to a high-starch diet, SI activity was increased but not at 12 h post diet switch. SI was the only hydrolase increased in the BBM, and its relative abundance and activity were positively correlated. Twenty-four hours after a reverse switch back to the lower starch diet, SI activity was decreased but not at 12 h post diet switch. Parallel changes in SI mRNA relative abundance were associated with the changes in SI activity in both diet-switch experiments, but our data also revealed an apparent diurnal rhythm in SI mRNA. This is the first demonstration that birds may rely on rapid increase in abundance of SI and its mRNA when adjusting to high-starch diet. Although the mechanisms underlying dietary induction of intestinal enzymes seem similar in nestling house sparrows and laboratory rodents, the time course for modulation in nestlings seemed half as fast compared with laboratory rodents. Before undertaking modulation, an opportunistic forager facing limited resources might rely on more extensive or prolonged environmental sampling, because the redesign of the intestine's hydrolytic capacity shortly after just one or a few meals of a new substrate might be a costly mistake.


Subject(s)
Adaptation, Physiological/drug effects , Dietary Carbohydrates/pharmacology , RNA, Messenger/metabolism , Sparrows/physiology , Starch/pharmacology , Sucrase-Isomaltase Complex/metabolism , Aging , Animal Feed , Animals , Diet/veterinary , Gene Expression Regulation, Enzymologic/drug effects , RNA, Messenger/genetics , Starch/administration & dosage , Sucrase-Isomaltase Complex/genetics
5.
Methods Protoc ; 3(1)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050538

ABSTRACT

A simple method for the identification of brush-border membrane α-glucosidases is described. The proteins were first solubilized and separated in a gel under native, non-denaturing, conditions. The gel was then incubated in substrate solutions (maltose or sucrose), and the product (glucose) exposed in situ by the oxidation of o-dianisidine, which yields a brown-orange color. Nano-liquid chromatography coupled to mass spectrometry analyses of proteins (nano LC-MS/MS) present in the colored bands excised from the gels, was used to confirm the presence of the enzymes. The stain is inexpensive and the procedure permits testing several substrates in the same gel. Once enzymes are identified, their abundance, relative to that of other proteins in the brush border, can be semi-quantified using nano LC-MS/MS.

6.
Mol Biol Evol ; 37(6): 1657-1666, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32061124

ABSTRACT

Vertebrate diets and digestive physiologies vary tremendously. Although the contribution of ecological and behavioral features to such diversity is well documented, the roles and identities of individual intestinal enzymes shaping digestive traits remain largely unexplored. Here, we show that the sucrase-isomaltase (SI)/maltase-glucoamylase (MGAM) dual enzyme system long assumed to be the conserved disaccharide and starch digestion framework in all vertebrates is absent in many lineages. Our analyses indicate that independent duplications of an ancestral SI gave rise to the mammalian-specific MGAM, as well as to other duplicates in fish and birds. Strikingly, the duplicated avian enzyme exhibits similar activities to MGAM, revealing an unexpected case of functional convergence. Our results highlight digestive enzyme variation as a key uncharacterized component of dietary diversity in vertebrates.


Subject(s)
Carbohydrate Metabolism/genetics , Evolution, Molecular , Gene Duplication , Vertebrates/genetics , alpha-Glucosidases/genetics , Animals , Chickens , Mice , Rats , Songbirds , Vertebrates/metabolism , alpha-Glucosidases/metabolism
7.
J Morphol ; 280(9): 1359-1369, 2019 09.
Article in English | MEDLINE | ID: mdl-31301093

ABSTRACT

Flying mammals present unique intestinal adaptations, such as lower intestinal surface area than nonflying mammals, and they compensate for this with higher paracellular absorption of glucose. There is no consensus about the mechanistic bases for this physiological phenomenon. The surface area of the small intestine is a key determinant of the absorptive capacity by both the transcellular and the paracellular pathways; thus, information about intestinal surface area and micro-anatomical structure can help explain differences among species in absorptive capacity. In order to elucidate a possible mechanism for the high paracellular nutrient absorption in bats, we performed a comparative analysis of intestinal villi architecture and enterocyte size and number in microchiropterans and rodents. We collected data from intestines of six bat species and five rodent species using hematoxylin and eosin staining and histological measurements. For the analysis we added measurements from published studies employing similar methodology, making in total a comparison of nine species each of rodents and bats. Bats presented shorter intestines than rodents. After correction for body size differences, bats had ~41% less nominal surface area (NSA) than rodents. Villous enhancement of surface area (SEF) was ~64% greater in bats than in rodents, mainly because of longer villi and a greater density of villi in bat intestines. Both taxa exhibited similar enterocyte diameter. Bats exceeded rodents by ~103% in enterocyte density per cm2 NSA, but they do not significantly differ in total number of enterocytes per whole animal. In addition, there is a correlation between SEF and clearance per cm2 NSA of L-arabinose, a nonactively transported paracellular probe. We infer that an increased enterocyte density per cm2 NSA corresponds to increased density of tight junctions per cm2 NSA, which provides a partial mechanistic explanation for understanding the high paracellular absorption observed in bats compared to nonflying mammals.


Subject(s)
Chiroptera/anatomy & histology , Chiroptera/physiology , Intestinal Absorption , Intestines/anatomy & histology , Intestines/physiology , Rodentia/anatomy & histology , Rodentia/physiology , Animals , Arabinose/metabolism , Body Weight , Diet , Enterocytes/metabolism , Intestine, Small/anatomy & histology , Intestine, Small/physiology
8.
J Anim Physiol Anim Nutr (Berl) ; 102(6): 1766-1773, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30073711

ABSTRACT

In the small intestine transcellular and paracellular pathways are implicated in water-soluble nutrient absorption. In small birds the paracellular pathway is quantitatively important while transcellular pathway is much more important in terrestrial mammals. However, there is not a clear understanding of the mechanistic underpinnings of the differences among taxa. This study was aimed to test the hypothesis that paracellular permeability in perfused intestinal segments is higher in passerine birds than rodents. We performed in situ intestinal perfusions on individuals of three species of passerine birds (Passer domesticus, Taeniopygia guttata and Furnarius rufus) and two species of rodents (Mus musculus and Meriones ungiculatus). Using radio-labelled molecules, we measured the uptake of two nutrients absorbed by paracellular and transcellular pathways (L-proline and 3-O-methyl-D-glucose) and one carbohydrate that has no mediated transport (L-arabinose). Birds exhibited ~2 to ~3 times higher L-arabinose clearance per cm2 epithelium than rodents. Moreover, paracellular absorption accounted for proportionally more of 3-O-methyl-D-glucose and L-proline absorption in birds than in rodents. These differences could be explained by differences in intestinal permeability and not by other factors such as increased retention time or higher intestinal nominal surface area. Furthermore, analysis of our results and all other existing data on birds, bats and rodents shows that insectivorous species (one bird, two bats and a rodent) had only 30% of the clearance of L-arabinose of non-insectivorous species. This result may be explained by weaker natural selection for high paracellular permeability in animal- than in plant-consumers. Animal-consumers absorb less sugar and more amino acids, whose smaller molecular size allow them to traverse the paracellular pathway more extensively and faster than glucose.


Subject(s)
3-O-Methylglucose/pharmacokinetics , Arabinose/pharmacokinetics , Gerbillinae/physiology , Intestinal Mucosa/physiology , Mice/physiology , Passeriformes/physiology , Proline/pharmacokinetics , Animals , Biological Transport , Permeability , Species Specificity
9.
Integr Zool ; 13(2): 139-151, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29168619

ABSTRACT

Recent research often lauds the services and beneficial effects of host-associated microbes on animals. However, hosting these microbes may come at a cost. For example, germ-free and antibiotic-treated birds generally grow faster than their conventional counterparts. In the wild, juvenile body size is correlated with survival, so hosting a microbiota may incur a fitness cost. Avian altricial nestlings represent an interesting study system in which to investigate these interactions, given that they exhibit the fastest growth rates among vertebrates, and growth is limited by their digestive capacity. We investigated whether reduction and restructuring of the microbiota by antibiotic treatment would: (i) increase growth and food conversion efficiency in nestling house sparrows (Passer domesticus); (ii) alter aspects of gut anatomy or function (particularly activities of digestive carbohydrases and their regulation in response to dietary change); and (iii) whether there were correlations between relative abundances of microbial taxa, digestive function and nestling growth. Antibiotic treatment significantly increased growth and food conversion efficiency in nestlings. Antibiotics did not alter aspects of gut anatomy that we considered but depressed intestinal maltase activity. There were no significant correlations between abundances of microbial taxa and aspects of host physiology. Overall, we conclude that microbial-induced growth limitation in developing birds is not driven by interactions with digestive capacity. Rather, decreased energetic and material costs of immune function or beneficial effects from microbes enriched under antibiotic treatment may underlie these effects. Understanding the costs and tradeoffs of hosting gut microbial communities represents an avenue of future research.


Subject(s)
Aging , Digestion , Gastrointestinal Microbiome/drug effects , Sparrows/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Diet , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/enzymology , Sparrows/growth & development
10.
Metabolites ; 7(4)2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29144418

ABSTRACT

Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer. Following drying, we re-solubilized the fractions for analysis with a 600 MHz NMR spectrometer equipped with a 1.7 mm cryogenic probe. In order to evaluate the feasibility of this protocol for metabolomics studies, we analyzed the metabolic profile of livers from house sparrow (Passer domesticus) nestlings raised on two different diets: livers from 10 nestlings raised on a high protein diet (HP) for 4 d and livers from 12 nestlings raised on the HP diet for 3 d and then switched to a high carbohydrate diet (HC) for 1 d. The protocol enabled the detection of 52 polar and nine non-polar metabolites in ¹H NMR spectra of the extracts. We analyzed the lipophilic metabolites by one-way ANOVA to assess statistically significant concentration differences between the two groups. The results of our studies demonstrate that the protocol described here can be exploited for high-throughput screening of small quantities of liver tissue (approx. 100 mg wet mass) obtainable from small animals.

11.
Mol Ecol ; 26(4): 1175-1189, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27862531

ABSTRACT

Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in-depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores: Liolaemus parvus and Liolaemus ruibali and an herbivore: Phymaturus williamsi). Using 16S rRNA gene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host-specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts.


Subject(s)
Bacteria/classification , Gastrointestinal Tract/microbiology , Lizards/microbiology , Microbiota , Animals , Feces , RNA, Ribosomal, 16S/genetics
12.
J Exp Biol ; 219(Pt 12): 1903-12, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27307545

ABSTRACT

While herbivory is a common feeding strategy in a number of vertebrate classes, less than 4% of squamate reptiles feed primarily on plant material. It has been hypothesized that physiological or microbial limitations may constrain the evolution of herbivory in lizards. Herbivorous lizards exhibit adaptations in digestive morphology and function that allow them to better assimilate plant material. However, it is unknown whether these traits are fixed or perhaps phenotypically flexible as a result of diet. Here, we maintained a naturally omnivorous lizard, Liolaemus ruibali, on a mixed diet of 50% insects and 50% plant material, or a plant-rich diet of 90% plant material. We compared parameters of digestive performance, gut morphology and function, and gut microbial community structure between the two groups. We found that lizards fed the plant-rich diet maintained nitrogen balance and exhibited low minimum nitrogen requirements. Additionally, lizards fed the plant-rich diet exhibited significantly longer small intestines and larger hindguts, demonstrating that gut morphology is phenotypically flexible. Lizards fed the plant-rich diet harbored small intestinal communities that were more diverse and enriched in Melainabacteria and Oscillospira compared with mixed diet-fed lizards. Additionally, the relative abundance of sulfate-reducing bacteria in the small intestine significantly correlated with whole-animal fiber digestibility. Thus, we suggest that physiological and microbial limitations do not sensu stricto constrain the evolution of herbivory in lizards. Rather, ecological context and fitness consequences may be more important in driving the evolution of this feeding strategy.


Subject(s)
Diet , Digestive System Physiological Phenomena , Gastrointestinal Microbiome/physiology , Lizards/microbiology , Lizards/physiology , Nitrogen/metabolism , Animals , Female , Herbivory , Male
13.
Physiol Biochem Zool ; 88(6): 680-4, 2015.
Article in English | MEDLINE | ID: mdl-26658415

ABSTRACT

Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.


Subject(s)
Diet , Intestinal Absorption/physiology , Intestines/physiology , Water/metabolism , Animals , Arabinose/metabolism , Chiroptera , Gastric Absorption/physiology , Species Specificity , Stomach/physiology
14.
Physiology (Bethesda) ; 30(1): 69-78, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25559157

ABSTRACT

Flying vertebrates (birds and bats) are under selective pressure to reduce the size of the gut and the mass of the digesta it carries. Compared with similar-sized nonflying mammals, birds and bats have smaller intestines and shorter retention times. We review evidence that birds and bats have lower spare digestive capacity and partially compensate for smaller intestines with increased paracellular nutrient absorption.


Subject(s)
Adaptation, Physiological/physiology , Birds/physiology , Intestine, Small/pathology , Life Style , Mammals/physiology , Animals , Chiroptera , Humans
15.
J Morphol ; 276(1): 102-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25130500

ABSTRACT

Studies on birds have led to the hypothesis that increased intestinal absorption between enterocytes (paracellular) evolved as a compensation for smaller intestinal size in fliers, which was perhaps selected to minimize the mass of digesta carried. This hypothesis predicts that bats will also exhibit relatively reduced intestinal size and high paracellular absorption, compared with nonflying mammals. Published studies on three bat species indicate relatively high paracellular absorption. One mechanism for increasing paracellular absorption per cm2 small intestine (SI) is increased number of tight junctions (TJs) across which paracellular absorption occurs. To our knowledge, we provide the first comparative analysis of enterocyte size and number in flying and nonflying mammals. Intestines of insectivorous bats Tadarida brasiliensis were compared with Mus musculus using hematoxylin and eosin staining method. Bats had shorter and narrower SIs than mice, and after correction for body size difference by normalizing to mass3/4, the bats had 40% less nominal surface area than the mouse, as predicted. Villous enhancement of surface area was 90% greater in the bat than in the mouse, mainly because of longer villi and a greater density of villi in bat intestines. Bat and mouse were similar in enterocyte diameter. Bats exceeded mice by 54.4% in villous area per cm length SI and by 95% in number of enterocytes per cm2 of the nominal surface area of the SI. Therefore, an increased density of TJs per cm2 SI may be a mechanistic explanation that helps to understand the high paracellular absorption observed in bats compared to nonflying mammals.


Subject(s)
Chiroptera/anatomy & histology , Intestinal Mucosa/anatomy & histology , Mice/anatomy & histology , Animals , Intestine, Small/anatomy & histology , Species Specificity
16.
J Exp Biol ; 217(Pt 18): 3311-7, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25104759

ABSTRACT

Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular mechanisms. Based on a few previous studies, the capacity for paracellular nutrient absorption seems greater in flying mammals than in nonflying mammals, but there has been little investigation of the mechanisms driving this difference. Therefore, we studied three species each of bats (Artibeus lituratus, Sturnira lilium and Carollia perspicillata) and nonflying mammals (Akodon montensis, Mus musculus and Rattus norvegicus). Using standard pharmacokinetic techniques in intact animals, we confirmed the greater paracellular nutrient absorption in the fliers, comparing one species in each group. Then we conducted in situ intestinal perfusions on individuals of all species. In both approaches, we measured the absorption of 3OMD-glucose, a nonmetabolizable glucose analog absorbed both paracellularly and transcellularly, as well as L-arabinose, which has no mediated transport. Fractional absorption of L-arabinose was three times higher in the bat (S. lilium: 1.2±0.24) than in the rodent (A. montensis: 0.35±0.04), whereas fractional absorption of 3OMD-glucose was complete in both species (1.46±0.4 and 0.97±0.12, respectively). In agreement, bats exhibited two to 12 times higher l-arabinose clearance per square centimeter nominal surface area than rodents in intestinal perfusions. Using L-arabinose, we estimated that the contribution of the paracellular pathway to total glucose absorption was higher in all three bats (109-137%) than in the rodents (13-39%). These findings contribute to an emerging picture that reliance on the paracellular pathway for nutrient absorption is much greater in bats relative to nonflying mammals and that this difference is driven by differences in intestinal permeability to nutrient-sized molecules.


Subject(s)
Carbohydrate Metabolism/physiology , Chiroptera/physiology , Intestinal Absorption/physiology , Intestines/physiology , Animals , Mice , Rats , Sigmodontinae/physiology , Species Specificity
17.
Article in English | MEDLINE | ID: mdl-23164537

ABSTRACT

Flying vertebrates have been hypothesized to have a high capacity for paracellular absorption of nutrients. This could be due to high permeability of the intestines to nutrient-sized molecules (i.e., in the size range of amino acids and glucose, MW 75-180 Da). We performed intestinal luminal perfusions of an insectivorous bat, Tadarida brasiliensis. Using radio-labeled molecules, we measured the uptake of two nutrients absorbed by paracellular and transporter-mediated mechanisms (L-proline, MW 115 Da, and D-glucose, MW 180 Da) and two carbohydrates that have no mediated transport (L-arabinose, MW 150 Da, and lactulose, MW 342 Da). Absorption of lactulose (0.61±0.06 nmol min(-1) cm(-1)) was significantly lower than that of the smaller arabinose (1.09±0.04 nmol min(-1) cm(-1)). Glucose absorption was significantly lower than that of proline at both nutrient concentrations (10mM and 75 mM). Using the absorption of arabinose to estimate the portion of proline absorption that is paracellular, we calculated that 25.1±3.0% to 66.2±7.8% of proline absorption is not transporter-mediated (varying proline from 1 mM to 75 mM). These results confirm our predictions that 1) paracellular absorption is molecule size selective, 2) absorption of proline would be greater than glucose absorption in an insectivore, and 3) paracellular absorption represents a large fraction of total nutrient absorption in bats.


Subject(s)
Biological Transport/physiology , Chiroptera , Intestinal Absorption/physiology , Animals , Arabinose/metabolism , Chiroptera/metabolism , Chiroptera/physiology , Eulipotyphla/metabolism , Eulipotyphla/physiology , Glucose/metabolism , Intestinal Mucosa/metabolism , Intestines/physiology , Lactulose/metabolism , Perfusion , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...