Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Sci Signal ; 16(804): eabl8266, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37751479

ABSTRACT

Virus-host interactions can reveal potentially effective and selective therapeutic targets for treating infection. Here, we performed an integrated analysis of the dynamics of virus replication and the host cell transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using human Caco-2 colon cancer cells as a model. Time-resolved RNA sequencing revealed that, upon infection, cells immediately transcriptionally activated genes associated with inflammatory pathways that mediate the antiviral response, which was followed by an increase in the expression of genes involved in ribosome and mitochondria function, thus suggesting rapid alterations in protein production and cellular energy supply. At later stages, between 24 and 48 hours after infection, the expression of genes involved in metabolic processes-in particular, those related to xenobiotic metabolism-was decreased. Mathematical modeling incorporating SARS-CoV-2 replication suggested that SARS-CoV-2 proteins inhibited the host antiviral response and that virus transcripts exceeded the translation capacity of the host cells. Targeting kinase-dependent pathways that exhibited increases in transcription in host cells was as effective as a virus-targeted inhibitor at repressing viral replication. Our findings in this model system delineate a sequence of SARS-CoV-2 virus-host interactions that may facilitate the identification of druggable host pathways to suppress infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Caco-2 Cells , SARS-CoV-2/genetics , Transcriptome , COVID-19/genetics , Epithelial Cells , Antiviral Agents
2.
Horm Res Paediatr ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37607514

ABSTRACT

INTRODUCTION: Diagnosis of central diabetes insipidus (CDI) remains challenging. Water deprivation testing and hypertonic saline infusion, as established diagnostic tests, are mentally and physically demanding for patients. Arginine-stimulated copeptin has been shown as a putative parameter for the differential diagnosis of CDI in adults. METHODS: In this single-centre retrospective study, we identified paediatric patients with suspected pituitary disorders who underwent standard arginine-testing. Patients with CDI, matched controls and primary polydipsia (PP) were identified. Diagnoses were confirmed retrospectively using comprehensive clinical and diagnostic characteristics. Serum copeptin concentrations were measured using a commercially available automated immunofluorescence assay (B.R.A.H.M.S Copeptin-proAVP KRYPTOR®) in samples stored for a median of 4.6 years (1.3-10.84) and collected before and 60 minutes after arginine-infusion. Cut-off analyses were performed using ROC curves. RESULTS: Serum samples from 32 patients with CDI, 32 matched controls and 5 patients with PP (n=69; 51 males, 18 females) were available for analysis. Median copeptin concentrations increased from 4.47 pmol/l (IQR: 3.47-8.36) to 6.96 pmol/l (IQR: 4.51-12.89; p<0.001) in controls, from 1.46 pmol/l (IQR: 1.21-2.12) to 1.44 (IQR: 1.10-1.87; p=0.645, ns) in CDI and from 4.40 pmol/l (3.95-6.33) to 9.58 pmol/l (8.19-11.42; p<0.001) in PP. The published cut-off value of 3.8 pmol/l revealed a sensitivity of 100 % and a specificity of 86.5 % in confirming CDI. CONCLUSION: Our results suggest that arginine-stimulated serum copeptin concentrations are a sensitive and specific diagnostic tool for CDI in paediatric patients, which may replace and simplify the conventional diagnostic pathway of water deprivation testing and hypertonic saline infusion.

3.
Clin Chem Lab Med ; 61(3): 452-463, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36537103

ABSTRACT

OBJECTIVES: Conventionally, reference intervals are established by direct methods, which require a well-characterized, obviously healthy study population. This elaborate approach is time consuming, costly and has rarely been applied to steroid hormones measured by mass spectrometry. In this feasibility study, we investigate whether indirect methods based on routine laboratory results can be used to verify reference intervals from external sources. METHODS: A total of 11,259 serum samples were used to quantify 13 steroid hormones by mass spectrometry. For indirect estimation of reference intervals, we applied a "modified Hoffmann approach", and verified the results with a more sophisticated statistical method (refineR). We compared our results with those of four recent studies using direct approaches. RESULTS: We evaluated a total of 81 sex- and age-specific reference intervals, for which at least 120 measurements were available. The overall agreement between indirectly and directly determined reference intervals was surprisingly good as nearly every fourth reference limit could be confirmed by narrow tolerance limits. Furthermore, lower reference limits could be provided for some low concentrated hormones by the indirect method. In cases of substantial deviations, our results matched the underlying data better than reference intervals from external studies. CONCLUSIONS: Our study shows for the first time that indirect methods are a valuable tool to verify existing reference intervals for steroid hormones. A simple "modified Hoffmann approach" based on the general assumption of a normal or lognormal distribution model is sufficient for screening purposes, while the refineR algorithm may be used for a more detailed analysis.


Subject(s)
Steroids , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Reference Values , Hormones , Age Factors
4.
Sci Adv ; 8(42): eabo5555, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36269831

ABSTRACT

Maladaptive insulin signaling is a key feature in the pathogenesis of severe metabolic disorders, including obesity and diabetes. Enhancing insulin sensitivity represents a major goal in the treatment of patients affected by diabetes. Here, we identify transforming growth factor-ß1 stimulated clone 22 D4 (TSC22D4) as a novel interaction partner for protein kinase B/Akt1, a critical mediator of insulin/phosphatidylinositol 3-kinase signaling pathway. While energy deprivation and oxidative stress promote the TSC22D4-Akt1 interaction, refeeding mice or exposing cells to glucose and insulin impairs this interaction, which relies on an intrinsically disordered region (D2 domain) within TSC22D4. Functionally, the interaction with TSC22D4 reduces basal phosphorylation of Akt and its downstream targets during starvation, thereby promoting insulin sensitivity. Genetic, liver-specific reconstitution experiments in mice demonstrate that the interaction between TSC22D4 and Akt1 improves glucose handling and insulin sensitivity. Overall, our findings postulate a model whereby TSC22D4 acts as an environmental sensor and interacts with Akt1 to regulate insulin signaling and glucose metabolism.


Subject(s)
Insulin Resistance , Proto-Oncogene Proteins c-akt , Animals , Mice , Glucose/metabolism , Insulin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors , Transforming Growth Factor beta1
5.
Stem Cells Int ; 2022: 7019088, 2022.
Article in English | MEDLINE | ID: mdl-36277042

ABSTRACT

Ischemia/reperfusion injury (IRI) remains a challenge in coronary artery bypass grafting (CABG). Diabetic patients with coronary artery disease are more likely to require CABG and therefore run a high risk for cardiovascular complications. Conditioned medium (CM) from bone marrow-derived mesenchymal stem cells has been shown to have beneficial effects against IRI. We hypothesized that adding CM to physiological saline protects vascular grafts from IRI in diabetic rats. Bone-marrow derived cells were isolated from nondiabetic rat femurs/tibias, and CM was generated. As we previously reported, CM contains 23 factors involved in inflammation, oxidative stress, and apoptosis. DM was induced by streptozotocin administration. Eight weeks later, to measure vascular function, aortic rings were isolated and mounted in organ bath chambers (DM group) or stored in 4°C saline, supplemented either with a vehicle (DM-IR group) or CM (DM-IR+CM group). Although DM was associated with structural changes compared to controls, there were no functional alterations. However, compared to the DM group, in the DM-IR aortas, impaired maximum endothelium-dependent vasorelaxation in response to acetylcholine (DM 86.7 ± 0.1% vs. DM-IR 42.5 ± 2.5% vs. DM-IR+CM 61.9 ± 2.0%, p < 0.05) was improved, caspase-3, caspase-8, caspase-9, and caspase-12 immunoreactivity was decreased, and DNA strand breakage, detected by the TUNEL assay, was reduced by CM. We present the experimental finding that the preservation of vascular grafts with CM prevents endothelial dysfunction after IRI in diabetic rats. Targeting apoptosis by CM may contribute to its protective effect.

6.
Growth Horm IGF Res ; 64: 101470, 2022 06.
Article in English | MEDLINE | ID: mdl-35688068

ABSTRACT

OBJECTIVE: Anorexia nervosa (AN) is a severe mental disorder that is characterized by restriction of energy intake, low weight, and endocrine abnormalities. One of the known endocrine changes in relation to underweight is in the GH/IGF-I axis. The aim of the study was (a) to investigate longitudinal characteristics of the IGF-I-change during therapy and weight gain in adult AN, (b) to determine relationships between IGF-I and leptin, (c) to characterize patients with weak and pronounced hormonal reactions to underweight. DESIGN: Data was assessed from 19 AN patients. Over the first two months, serum IGF-I concentrations were assessed on a weekly basis; thereafter on a monthly basis. The trend of IGF-I values over time was analyzed using individual growth models. RESULTS: In total, n = 177 IGF-I measurements were analyzed. IGF-I increased significantly dependent on BMI (slope = 20.81, p < 0.001), not modulated by duration of disease. The increase in IGF-I was significantly related to the increase in leptin concentrations over time (slope = 15.57, p < 0.001). Patients with a weaker hormonal reaction to underweight were significantly older compared to patients with a pronounced hormonal reaction (t(17) = 3.07, p = 0.007). CONCLUSIONS: During treatment, IGF-I change is clearly related to BMI as well as to leptin. Age appears to be associated with the IGF-I response to underweight.


Subject(s)
Anorexia Nervosa , Leptin , Adult , Anorexia Nervosa/complications , Anorexia Nervosa/therapy , Body Mass Index , Humans , Inpatients , Insulin-Like Growth Factor I , Thinness/complications
7.
J Clin Endocrinol Metab ; 107(8): 2167-2181, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35661214

ABSTRACT

CONTEXT: Novel fasting interventions have gained scientific and public attention. Periodic fasting has emerged as a dietary modification promoting beneficial effects on metabolic syndrome. OBJECTIVE: Assess whether periodic fasting reduces albuminuria and activates nephropathy-driven pathways. DESIGN/PARTICIPANTS: Proof-of-concept study where individuals with type 2 diabetes (n = 40) and increased albumin-to-creatinine ratio (ACR) were randomly assigned to receive a monthly fasting-mimicking diet (FMD) or a Mediterranean diet for 6 months with 3-month follow-up. MAIN OUTCOMES MEASURES: Change in ACR was assessed by analysis of covariance adjusted for age, sex, weight loss, and baseline value. Prespecified subgroup analysis for patients with micro- vs macroalbuminuria at baseline was performed. Change in homeostatic model assessment for insulin resistance (HOMA-IR), circulating markers of dicarbonyl detoxification (methylglyoxal-derived hydroimidazolone 1, glyoxalase-1, and hydroxyacetone), DNA-damage/repair (phosphorylated histone H2AX), lipid oxidation (acylcarnitines), and senescence (soluble urokinase plasminogen activator receptor) were assessed as exploratory endpoints. RESULTS: FMD was well tolerated with 71% to 95% of the participants reporting no adverse effects. After 6 months, change in ACR was comparable between study groups [110.3 (99.2, 121.5) mg/g; P = 0.45]. FMD led to a reduction of ACR in patients with microalbuminuria levels at baseline [-30.3 (-35.7, -24.9) mg/g; P ≤ 0.05] but not in those with macroalbuminuria [434.0 (404.7, 463.4) mg/g; P = 0.23]. FMD reduced HOMA-IR [-3.8 (-5.6, -2.0); P ≤ 0.05] and soluble urokinase plasminogen activator receptor [-156.6 (-172.9, -140.4) pg/mL; P ≤ 0.05], while no change was observed in markers of dicarbonyl detoxification or DNA-damage/repair. Change in acylcarnitines was related to patient responsiveness to ACR improvement. At follow-up only HOMA-IR reduction [-1.9 (-3.7, -0.1), P ≤ 0.05]) was sustained. CONCLUSIONS: Improvement of microalbuminuria and of markers of insulin resistance, lipid oxidation, and senescence suggest the potential beneficial effects of periodic fasting in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Insulin Resistance , Albuminuria/etiology , Biomarkers , Creatinine , DNA/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/etiology , Fasting , Humans , Lipids , Receptors, Urokinase Plasminogen Activator
8.
Front Cardiovasc Med ; 9: 813215, 2022.
Article in English | MEDLINE | ID: mdl-35350534

ABSTRACT

Objective: Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results: Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1ß level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion: We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.

10.
Ann Surg Oncol ; 29(1): 139-151, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34260006

ABSTRACT

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) combined with cytoreductive surgery (CRS) is the treatment of choice for selected patients with peritoneal malignancies. HIPEC is accompanied by moderate-to-high patient morbidity, including acute kidney injury. The significance of nephrotoxic agents such as cisplatin versus hyperthermia in HIPEC-induced nephrotoxicity has not been defined yet. PATIENTS AND METHODS: A total of 153 patients treated with HIPEC were divided into groups with (AKI+) and without (AKI-) kidney injury. Laboratory parameters and data concerning patient demographics, underlying disease, surgery, complications, and HIPEC were gathered to evaluate risk factors for HIPEC-induced AKI. A preclinical mouse model was applied to assess the significance of cisplatin and hyperthermia in HIPEC-induced AKI, as well as protective effects of the cytoprotective agent amifostine. RESULTS: AKI occurred in 31.8% of patients undergoing HIPEC. Treatment with cisplatin-containing HIPEC regimens represented a major risk factor for HIPEC-related AKI (p < 0.001). Besides, angiotensin receptor blockers and increased preoperative creatinine and urea levels were independent risk factors for AKI after HIPEC. In a preclinical mouse model, intraperitoneal perfusion with cisplatin induced AKI, whereas hyperthermia alone, or in combination with cisplatin, did not induce or enhance renal injury. Amifostine failed to confer nephroprotective effects in a miniaturized HIPEC model. CONCLUSIONS: AKI is a frequent complication after HIPEC. The risk of renal injury is particularly high in patients treated with cisplatin-containing HIPEC regimens. Hyperthermic perfusion of the abdomen by itself does not seem to induce or aggravate HIPEC-induced renal injury.


Subject(s)
Acute Kidney Injury , Hyperthermic Intraperitoneal Chemotherapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/therapy , Animals , Humans , Laboratories , Mice , Retrospective Studies
11.
Diabetologia ; 64(12): 2843-2855, 2021 12.
Article in English | MEDLINE | ID: mdl-34480211

ABSTRACT

AIMS/HYPOTHESIS: The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. METHODS: Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. RESULTS: In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). CONCLUSIONS/INTERPRETATION: This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/pathology , Follow-Up Studies , Humans , Hyperalgesia/complications , Neurons/metabolism , Pilot Projects
12.
J Heart Lung Transplant ; 40(10): 1135-1144, 2021 10.
Article in English | MEDLINE | ID: mdl-34420849

ABSTRACT

BACKGROUND: Warm ischemia followed by blood reperfusion is associated with reduced myocardial contractility. Circulatory death (CD) hearts are maintained by machine perfusion (MP) with blood. However, the impact of MP with histidine-tryptophane-ketoglutarate (HTK) or novel HTK-N solution on reconditioning of CD-heart contractility is unknown. METHODS: In a porcine model, native hearts were directly harvested (control), or CD was induced before harvesting, followed by left ventricular (LV) contractile assessment. In MP-groups, CD-hearts were maintained for 4 h by MP with blood (CD-B), cold oxygenated HTK (CD-HTK) or HTK-N (CD-HTK-N) before contractile evaluation (all groups n = 8). We performed immunohistochemistry of LV myocardial samples. We profiled myocardial expression of 84 oxidative stress-related genes and correlated the findings with myocardial contractility via a machine learning algorithm. RESULTS: HTK-N improved end-systolic pressure (ESP=172±10 vs 132±5 mmHg, p = 0.02) and maximal slope of pressure increment (dp/dtmax=2161±214 vs 1240±167 mmHg/s, p = 0.005) compared to CD, whereas CD-B failed to improve contractility. Dp/dtmax (2161±214 vs 1177±156, p = 0.08) and maximal rate of pressure decrement (dp/dtmin=-1501±228 vs -637±79, p = 0.005) were also superior in CD-HTK-N compared to CD-B. In CD-HTK-N, myocardial 4-hydroxynonenal (marker for oxidative stress; p<0.001), nitrotyrosine (marker for nitrosative stress; p = 0.004), poly(adenosine diphosphate-ribose)polymerase (marker for necrosis; p = 0.028) immunoreactivity and cell swelling (p = 0.008) were decreased compared to CD-B. Strong correlation of gene expression with ESP was identified for oxidative stress defense genes in CD-HTK-N. CONCLUSION: During harvesting procedure, MP with HTK-N reconditions CD-heart systolic and diastolic function by reducing oxidative and nitrosative stress and preventing cardiomyocytes from cell swelling and necrosis.


Subject(s)
Extracorporeal Circulation/methods , Heart Transplantation/methods , Myocardial Contraction/drug effects , Organ Preservation Solutions/pharmacology , Organ Preservation/methods , Tissue Donors , Warm Ischemia/methods , Animals , Blood Pressure/drug effects , Disease Models, Animal , Swine
13.
Geroscience ; 43(4): 1995-2013, 2021 08.
Article in English | MEDLINE | ID: mdl-33871784

ABSTRACT

The use of hearts with left-ventricular (LV) hypertrophy (LVH) could offer an opportunity to extend the donor pool for cardiac transplantation. We assessed the effects of LVH in 18-month-old spontaneously hypertensive stroke-prone (SHRSP) donor rats and following transplantation. In donors, cardiac function and structural alterations were assessed. Then, the hearts were transplanted into young normotensive-rats. We evaluated LV graft function 1 h after transplantation. The myocardial expression of 92 genes involved in apoptosis, inflammation, and oxidative-stress was profiled using PCR-array. Compared to controls, SHRSP-rats developed LVH, had increased LV systolic performance (slope of the end-diastolic pressure-volume (PV) relationship: 1.6±0.2 vs 0.8±0.1mmHg/µl, p<0.05) accompanied by diastolic dysfunction [prolonged time constant of LV pressure decay (Tau: 15.8±0.6 vs 12.3±0.5ms) and augmented diastolic stiffness (LV end-diastolic PV relationship: 0.103±0.012 vs 0.045±0.006mmHg/ml), p<0.05]. They presented ECG changes, myocardial fibrosis, and increased nitrotyrosine immunoreactivity and plasma troponin-T and creatine kinase-CM levels. After transplantation, even though the graft contractility was better in SHRSP rats compared to controls, the adverse impact of ischemia/reperfusion-injury on contractility was not altered (Ees ratio after versus before transplantation: 32% vs 29%, p>0.05). Whereas nitrotyrosine immunoreactivity was higher, myeloperoxidase-positive cell infiltration was decreased in the SHRSP+transplanted compared to control+transplanted. Among the tested genes, LVH was associated with altered expression of 38 genes in donors, while transplantation of these hearts resulted in the change of four genes. Alterations in 18-month-old donor hearts, as a consequence of hypertension and LVH, were not associated with graft dysfunction in the early phase of reperfusion after transplantation.


Subject(s)
Heart Transplantation , Animals , Gene Expression Profiling , Heart Transplantation/adverse effects , Humans , Hypertrophy , Rats , Reperfusion , Tissue Donors
14.
Nat Commun ; 12(1): 608, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504783

ABSTRACT

Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.


Subject(s)
Hematopoietic Stem Cells/metabolism , Membrane Proteins/metabolism , Netrin-1/metabolism , Stem Cell Niche , Animals , Arterioles/metabolism , Cell Differentiation , Cell Proliferation , Cellular Senescence , Gene Deletion , Hematopoietic Stem Cell Transplantation , Mice, Mutant Strains , Mice, Transgenic , Signal Transduction
15.
J Clin Med ; 10(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467666

ABSTRACT

The effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics in acute respiratory distress syndrome (ARDS) have still not been fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP and ARDS is unclear. In this paper, 18 pigs under general anesthesia received a double hit lung injury. After saline lung lavage and 2 h of injurious mechanical ventilation to induce an acute lung injury (ALI), an intra-abdominal balloon was filled until an IAP of 10 mmHg was generated. Animals were randomly assigned to one of three groups (group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O) and ventilated for 6 h. We measured end-expiratory lung volume (EELV) per kg bodyweight, driving pressure (ΔP), transpulmonary pressure (ΔPL), static lung compliance (Cstat), oxygenation (P/F ratio) and cardiac index (CI). In group A, we found increases in ΔP (22 ± 1 vs. 28 ± 2 cmH2O; p = 0.006) and ΔPL (16 ± 1 vs. 22 ± 2 cmH2O; p = 0.007), with no change in EELV/kg (15 ± 1 vs. 14 ± 1 mL/kg) when comparing hours 0 and 6. In group B, there was no change in ΔP (26 ± 2 vs. 25 ± 2 cmH2O), ΔPL (19 ± 2 vs. 18 ± 2 cmH2O), Cstat (21 ± 3 vs. 21 ± 2 cmH2O/mL) or EELV/kg (12 ± 2 vs. 13 ± 3 mL/kg). ΔP and ΔPL were significantly lower after 6 h when comparing between group C and A (21 ± 1 vs. 28 ± 2 cmH2O; p = 0.020) and (14 ± 1 vs. 22 ± 2 cmH2O; p = 0.013)). The EELV/kg increased over time in group C (13 ± 1 vs. 19 ± 2 mL/kg; p = 0.034). The P/F ratio increased in all groups over time. CI decreased in groups B and C. The global lung injury score did not significantly differ between groups (A: 0.25 ± 0.05, B: 0.21 ± 0.02, C: 0.22 ± 0.03). In this model of ALI, elevated IAP, ΔP and ΔPL increased further over time in the group with a PEEP of 5 cmH2O applied over 6 h. This was not the case in the groups with a PEEP of 10 and 15 cmH2O. Although ΔP and ΔPL were significantly lower after 6 hours in group C compared to group A, we could not show significant differences in histological lung injury score.

16.
Metabolites ; 11(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478094

ABSTRACT

Retinoic acids are vitamin A metabolites that have numerous essential functions in humans, and are also used as drugs to treat acne and acute promyelocytic leukemia. All-trans retinoic acid (atRA) is the major occurring metabolite of retinoic acid in humans. This study provides a sensitive and specific liquid chromatography-tandem mass spectrometry approach in order to quantify atRA in human plasma samples. The isolation of atRA by hyperacidified liquid-liquid extraction using hexane and ethyl acetate resulted in a recovery of 89.7 ± 9.2%. The lower limit of detection was 20 pg·mL-1, and 7 point calibration displayed good linearity (R2 = 0.994) in the range of 50-3200 pg mL-1. Selectivity was guaranteed by the use of two individual mass transitions (qualifier and quantifier), and precision and accuracy were determined intraday and interday with a coefficient variation of 9.3% (intraday) and 14.0% (interday). Moreover, the method could be used to isolate atRA from hyperlipidemic samples. Applying this method to plasma samples from patients with poorly controlled Type 2 diabetes significantly decreased atRA plasma levels as compared to those of the healthy controls. In addition, atRA concentrations were highly associated with increased low-density lipoprotein (LDL) and decreased high-density lipoprotein (HDL) cholesterol levels.

17.
Blood ; 137(9): 1219-1232, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33270819

ABSTRACT

Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.


Subject(s)
Blood Coagulation , Brain Neoplasms/blood , Breast Neoplasms/pathology , Melanoma/pathology , Neoplastic Cells, Circulating/pathology , Thrombosis/blood , Animals , Brain Neoplasms/etiology , Brain Neoplasms/pathology , Breast Neoplasms/blood , Breast Neoplasms/complications , Cell Cycle Checkpoints , Disease Models, Animal , Female , Humans , Melanoma/blood , Melanoma/complications , Mice , Thrombosis/etiology , Thrombosis/pathology , von Willebrand Factor/analysis
18.
PLoS One ; 15(4): e0230830, 2020.
Article in English | MEDLINE | ID: mdl-32294090

ABSTRACT

INTRODUCTION: Intra-abdominal hypertension (IAH) is a well-known phenomenon in critically ill patients. Effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics are still not fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP is unclear. METHODS: We investigated changes in lung mechanics and transformation in histological lung patterns using three different PEEP levels in eighteen deeply anesthetized pigs with an IAP of 10 mmHg. After establishing the intra-abdominal pressure, we randomized the animals into 3 groups. Each of n = 6 (Group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O). End-expiratory lung volume (EELV/kg body weight (bw)), pulmonary compliance (Cstat), driving pressure (ΔP) and transpulmonary pressure (ΔPL) were measured for 6 hours. Additionally, the histological lung injury score was calculated. RESULTS: Comparing hours 0 and 6 in group A, there was a decrease of EELV/kg (27±2 vs. 16±1 ml/kg; p<0.05) and of Cstat (42±2 vs. 27±1 ml/cmH2O; p<0.05) and an increase of ΔP (11±0 vs. 17±1 cmH2O; p<0.05) and ΔPL (6±0 vs. 10±1 cmH2O; p<0.05). In group B, there was no significant change in EELV/kg (27±3 vs. 24±3 ml/kg), but a decrease in Cstat (42±3 vs. 32±1 ml/cmH20; p<0.05) and an increase in ΔP (11±1 vs. 15±1 cmH2O; p<0.05) and ΔPL (5±1 vs. 7±0 cmH2O; p<0.05). In group C, there were no significant changes in EELV/kg (27±2 vs. 29±3 ml/kg), ΔP (10±1 vs. 12±1 cmH2O) and ΔPL (5±1 vs. 7±1 cmH2O), but a significant decrease of Cstat (43±1 vs. 37±1 ml/cmH2O; p<0.05). Histological lung injury score was lowest in group B. CONCLUSIONS: A moderate elevated IAP of 10 mmHg leads to relevant changes in lung mechanics during mechanical ventilation. In our study, a PEEP of 10 cmH2O was associated with a lower lung injury score and was able to overcome the IAP induced alterations of EELV.


Subject(s)
Intra-Abdominal Hypertension/complications , Lung Injury/complications , Lung Injury/pathology , Positive-Pressure Respiration , Animals , Female , Lung Injury/physiopathology , Lung Injury/therapy , Swine
19.
Z Evid Fortbild Qual Gesundhwes ; 150-152: 38-44, 2020 Apr.
Article in German | MEDLINE | ID: mdl-32291158

ABSTRACT

INTRODUCTION: In 31 to 75 percent of cases, errors in laboratory medicine have preanalytical causes such as erroneous blood sampling. Erroneous blood sampling may lead to false test results and additional laboratory cost; it may increase analyzing time and endanger the health of patients and employees. In particular, under- and overfilling of blood sampling tubes can considerably distort laboratory values. So far there has been a lack of studies investigating the effect of a tailored training for ward staff to improve preanalytical procedures on blood sampling. ISSUE: Can a tailored preanalytical training significantly reduce the number of commented under- and overfilled coagulation samples, reduce the number of hemolytic serum and lithium heparin samples and increase the number of standards-compliant blood sampling? METHODS: In an intervention study we compared the number of commented under- and overfilled coagulation tubes and the number of hemolytic serum and lithium heparin samples on the basis of laboratory data and, using participant observation, compared the blood sampling quality on a surgical ward before and after participation in a training course. Based on prior results of participant observation, a 20-minute training was conceptualized and conducted. Target criteria were a) the number of commented under- and overfilled coagulation tubes and b) the number of hemolytic serum and lithium heparin samples in a before/after comparison (Oct-Dec 2017 and Jan-Mar 2018 compared with Jun-Aug 2018) and an annual comparison (Jun-Aug 2017 compared to Jun-Aug 2018), and c) a standards-compliant performance of blood sampling in a before/after comparison (Apr 2018 and Jun 2018). The number of commented under- and overfilled coagulation tubes in the annual comparison was compared using the Chi-square test. RESULTS: After the training (Jun-Aug 2018) the number of commented under- and overfilled coagulation tubes decreased significantly in annual comparison to Jun-Aug 2017 (-68.07%, p < 0.001). The number of commented under- and overfilled coagulation tubes and of hemolytic serum and lithium heparin samples decreased in the before/after and in the annual comparison, and the number of standards-compliant blood samplings increased in the before/after comparison. CONCLUSION: The training contributed significantly to reducing the number of commented coagulation samples and hemolytic serum and lithium heparin samples and to increasing standards-compliant blood sampling. There is a need to investigate to what extent this concept can be transferred to other wards, and in which intervals further trainings should be conducted in order to maintain these positive effects.


Subject(s)
Blood Specimen Collection , Heparin , Germany , Humans , Lithium
20.
EMBO Mol Med ; 12(4): e09271, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32187826

ABSTRACT

The role of the endothelium is not just limited to acting as an inert barrier for facilitating blood transport. Endothelial cells (ECs), through expression of a repertoire of angiocrine molecules, regulate metabolic demands in an organ-specific manner. Insulin flux across the endothelium to muscle cells is a rate-limiting process influencing insulin-mediated lowering of blood glucose. Here, we demonstrate that Notch signaling in ECs regulates insulin transport to muscle. Notch signaling activity was higher in ECs isolated from obese mice compared to non-obese. Sustained Notch signaling in ECs lowered insulin sensitivity and increased blood glucose levels. On the contrary, EC-specific inhibition of Notch signaling increased insulin sensitivity and improved glucose tolerance and glucose uptake in muscle in a high-fat diet-induced insulin resistance model. This was associated with increased transcription of Cav1, Cav2, and Cavin1, higher number of caveolae in ECs, and insulin uptake rates, as well as increased microvessel density. These data imply that Notch signaling in the endothelium actively controls insulin sensitivity and glucose homeostasis and may therefore represent a therapeutic target for diabetes.


Subject(s)
Endothelial Cells/metabolism , Insulin Resistance , Insulin , Muscle, Skeletal/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Glucose/metabolism , Insulin/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...