Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters











Publication year range
1.
Planta ; 259(2): 33, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38160210

ABSTRACT

MAIN CONCLUSION: Root transcriptomics and biochemical analyses in water-stressed Pisum sativum plants inoculated with Pseudomonas spp. suggested preservation of ABA-related pathway and ROS detoxification, resulting in an improved tolerance to stress. Drought already affects agriculture in large areas of the globe and, due to climate change, these areas are predicted to become increasingly unsuitable for agriculture. For several years, plant growth-promoting bacteria (PGPB) have been used to improve legume yields, but many aspects of this interaction are still unclear. To elucidate the mechanisms through which root-associated PGPB can promote plant growth in dry environments, we investigated the response of pea plants inoculated with a potentially beneficial Pseudomonas strain (PK6) and subjected to two different water regimes. Combined biometric, biochemical, and root RNA-seq analyses revealed that PK6 improved pea growth specifically under water deficit, as inoculated plants showed an increased biomass, larger leaves, and longer roots. Abscisic acid (ABA) and proline quantification, together with the transcriptome analysis, suggested that PK6-inoculated plant response to water deficit was more diversified compared to non-inoculated plants, involving alternative metabolic pathways for the detoxification of reactive oxygen species (ROS) and the preservation of the ABA stress signaling pathway. We suggest that the metabolic response of PK6-inoculated plants was more effective in their adaptation to water deprivation, leading to their improved biometric traits. Besides confirming the positive role that PGPB can have in the growth of a legume crop under adverse conditions, this study offers novel information on the mechanisms regulating plant-bacteria interaction under varying water availability. These mechanisms and the involved genes could be exploited in the future for the development of legume varieties, which can profitably grow in dry climates.


Subject(s)
Pisum sativum , Pseudomonas , Pisum sativum/genetics , Water/metabolism , Reactive Oxygen Species/metabolism , Abscisic Acid/metabolism , Gene Expression Profiling , Plant Roots/metabolism , Droughts
2.
Sci Total Environ ; 904: 166809, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37690750

ABSTRACT

Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.


Subject(s)
Quercus , Quercus/physiology , Ecosystem , Genotype , Forests , Trees , Water , Droughts
4.
Sci Total Environ ; 878: 163124, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37001665

ABSTRACT

Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the ß-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.


Subject(s)
Quercus , Wood , Wood/metabolism , Seedlings/metabolism , Quercus/physiology , Dehydration , Xylem/physiology , Carbohydrates , Droughts , Plant Leaves/physiology , Starch/metabolism , Glucose , Trees/physiology
5.
Front Microbiol ; 13: 889878, 2022.
Article in English | MEDLINE | ID: mdl-35572685

ABSTRACT

In this study, we developed and applied a new spectroscopic fluorescence method for the in vivo detection of the early events in the interaction between tobacco (Nicotiana tabacum L.) plants and pathogenic bacteria. The leaf disks were infiltrated with a bacterial suspension in sterile physiological solution (SPS), or with SPS alone as control. The virulent Pseudomonas syringae pv. tabaci strain ATCC 11528, its non-pathogenic ΔhrpA mutant, and the avirulent P. syringae pv. tomato strain DC3000 were used. At different post-infiltration time-points, the in vivo fluorescence spectra on leaf disks were acquired by a fiber bundle-spectrofluorimeter. The excitation spectra of the leaf blue emission at 460 nm, which is mainly due to the accumulation of coumarins following a bacterial infiltration, were processed by using a two-bands Gaussian fitting that enabled us to isolate the scopoletin (SCT) contribution. The pH-dependent fluorescence of SCT and scopolin (SCL), as determined by in vitro data and their intracellular localization, as determined by confocal microscopy, suggested the use of the longer wavelength excitation band at 385 nm of 460 nm emission (F385_460) to follow the metabolic evolution of SCT during the plant-bacteria interaction. It was found to be directly correlated (R 2 = 0.84) to the leaf SCT content, but not to that of SCL, determined by HPLC analysis. The technique applied to the time-course monitoring of the bacteria-plant interaction clearly showed that the amount and the timing of SCT accumulation, estimated by F385_460, was correlated with the resistance to the pathogen. As expected, this host defense response was delayed after P. syringae pv. tabaci ATCC 11528 infiltration, in comparison to P. syringae pv. tomato DC3000. Furthermore, no significant increase of F385_460 (SCT) was observed when using the non-pathogenic ΔhrpA mutant of P. syringae pv. tabaci ATCC 11528, which lacks a functional Type Three Secretion System (TTSS). Our study showed the reliability of the developed fluorimetric method for a rapid and non-invasive monitoring of bacteria-induced first events related to the metabolite-based defense response in tobacco leaves. This technique could allow a fast selection of pathogen-resistant cultivars, as well as the on-site early diagnosis of tobacco plant diseases by using suitable fluorescence sensors.

6.
Tree Physiol ; 42(7): 1463-1480, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35137225

ABSTRACT

Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.


Subject(s)
Ascomycota , Corylus , Mycorrhizae , Corylus/genetics , Corylus/microbiology , Genotype , Mycorrhizae/physiology
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361067

ABSTRACT

Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their "antioxidant" function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.


Subject(s)
Antioxidants/pharmacology , Oleaceae/drug effects , Phenylpropionates/pharmacology , Plant Leaves/drug effects , Radiation-Protective Agents/pharmacology , Seasons , Stress, Physiological , Carotenoids/pharmacology , Droughts , Light , Lipid Peroxidation , Oleaceae/growth & development , Oleaceae/radiation effects , Oxidative Stress , Photosynthesis , Pigmentation , Plant Leaves/growth & development , Plant Leaves/radiation effects
8.
Metabolites ; 11(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198607

ABSTRACT

Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere-atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest ecosystems. Novel methods to measure and determine BVOCs in the atmosphere are of compelling importance considering the ongoing climate changes. In this study, we developed a fast and easy-to-handle analytical methodology to sample these compounds in field experiments using solid-phase microextraction (SPME) fibers at the atmospheric level. An improvement of BVOCs adsorption from SPME fibers was obtained by coupling the fibers with fans to create a dynamic sampling system. This innovative technique was tested sampling Q. ilex BVOCs in field conditions in comparison with the conventional static SPME sampling technique. The results showed a great potential of this dynamic sampling system to collect BVOCs at the atmosphere level, improving the efficiency and sensitivity of SPME fibers. Indeed, our novel device was able to reduce the sampling time, increase the amount of BVOCs collected through the fibers and add information regarding the emissions of these compounds at the environmental level.

9.
Environ Res ; 201: 111475, 2021 10.
Article in English | MEDLINE | ID: mdl-34166663

ABSTRACT

Ozone (O3) is an oxidative air pollutant that affects plant growth. Moringa oleifera is a tree species distributed in the tropical and subtropical regions. This species presents high morphological plasticity, which increases its ability to tolerate stressful conditions, but with no O3 risk assessment calculated so far. The present study assessed the O3 risk to different M. oleifera ecotypes using exposure-based index (AOT40) or flux-based index (PODy - where y is a threshold of O3 uptake). PODy considers the O3 uptake through the stomata and the consequence of environmental climate conditions on stomatal conductance (gsto); thus, it is efficient in assessing O3 risk. Five M. oleifera ecotypes were subjected to ambient (Amb.); middle (Mid. X1.5), and High (x2.0) O3 concentrations for 77 days in a free-air controlled exposure facility (FACE). Leaf biomass (LB) was evaluated, and the biomass loss was projected assuming a clean atmosphere (10 ppb as 24 h O3 average). The gsto parameterization was calculated using the Jarvis-type multiplicative algorithm considering several climate factors, i.e., light intensity, air temperature, air vapor pressure deficit, and AOT40. Ozone exposure harmed the LB of all ecotypes. The high gsto (~559 mmol H2O m-2 s-1) can be considered the reason for the species' O3 sensitivity. M. oleifera is adapted to hot climate conditions, and gsto was restricted with air temperature (Tmin) below ~ 9 °C. As expected, the PODy index performed better than the AOT40 for estimating the O3 effect on biomass losses. We recommend a y threshold of 4 nmol m-2 s-1 to incorporate O3 effects on M. oleifera LB. To not exceed a 4% reduction of LB for any M. oleifera genotype, we recommend the critical levels of 1.1 mmol m-2 POD4.


Subject(s)
Air Pollutants , Moringa oleifera , Ozone , Air Pollutants/analysis , Ecotype , Ozone/analysis , Ozone/toxicity , Plant Leaves , Trees
10.
Plants (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802222

ABSTRACT

The use of plant extracts in skin-care cosmetics is a modern trend due to their richness in polyphenols that act as anti-aging molecules. Hibiscus roseus is a perennial species naturalized in Italy, with beautiful soft pink flowers; its phenolic composition and biological activities have not been studied yet. The aim of this study was to characterize and quantify the phenolics and to evaluate the antioxidant, sun protection factor (SPF), and anti-collagenase activities of the ethanolic extracts of H. roseus leaves (HL) and flowers (HF). p-Coumaric, chlorogenic, and trans-ferulic acids derivatives as well as quercetin and kaempferol flavonoids were the main phenolic compounds detected. Catechin, epicatechin, kaempferol-3-O-rutinoside, kaempferol-3-O-glucoside, kaempferol-7-O-glucoside, tiliroside, oenin, and peonidin-3-O-glucoside were detected only in HF, while phloridzin was exclusive from HL, which also showed greater amounts of hydroxycinnamic acid derivatives. HF was richer in flavonoids and total phenolics, also exhibiting greater antioxidant capacity. The SPF and anti-collagenase activity of both extracts were similar and comparable to those of synthetic standards. The overall results demonstrate that H. roseus extracts are promising sources of bioactive phenolic compounds that could be potentially applied as anti-aging agents in skin-care cosmetics.

11.
Int J Mol Sci ; 22(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809189

ABSTRACT

Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.


Subject(s)
Biological Products/metabolism , Crops, Agricultural/metabolism , Disease Resistance/genetics , Secondary Metabolism/genetics , Crops, Agricultural/growth & development , Flavonoids/metabolism , Humans , Mediterranean Region , Metabolic Networks and Pathways/genetics , Phytochemicals/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Stress, Physiological/drug effects , Terpenes/metabolism
12.
J Biotechnol ; 331: 53-62, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33727083

ABSTRACT

Agricultural sustainability is an increasing need considering the challenges posed by climate change and rapid human population growth. The use of plant growth-promoting rhizobacteria (PGPR) may represent an excellent, new agriculture practice to improve soil quality while promoting growth and yield of important crop species subjected to water stress conditions. In this study, two PGPR strains with 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase activity were co-inoculated in velvet bean plants to verify the physiological, biochemical and molecular responses to progressive water stress. The results of our study show that the total biomass and the water use efficiency of inoculated plants were higher than uninoculated plants at the end of the water stress period. These positive effects may be derived from a lower root ACC content (-45 %) in water-stressed inoculated plants than in uninoculated ones resulting in lower root ethylene emission. Furthermore, the ability of inoculated plants to maintain higher levels of both isoprene emission, a priming compound that may help to protect leaves from oxidative damage, and carbon assimilation during water stress progression may indicate the underlining metabolic processes conferring water stress tolerance. Overall, the experimental results show that co-inoculation with ACC deaminase PGPR positively affects tolerance to water deficit, confirming the potential for biotechnological applications in water-stressed agricultural areas.


Subject(s)
Mucuna , Butadienes , Carbon-Carbon Lyases , Ethylenes , Hemiterpenes , Humans , Photosynthesis , Plant Roots , Soil Microbiology , Water
13.
Z Naturforsch C J Biosci ; 76(1-2): 79-86, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33027057

ABSTRACT

Cistus x incanus L. is a Mediterranean evergreen shrub used in folk medicine for the treatment of inflammatory disorders but the underlying mechanisms are not fully understood. We therefore investigated the anti-inflammatory effects of an ethyl acetate fraction (EAF) from C. x incanus L. leaves on lipopolysaccharide (LPS) activated RAW 264.7 macrophages. HPLC analysis revealed myricetin and quercetin derivatives to be the major compounds in EAF; EAF up to 1 µM of total phenolic content, was not cytotoxic and inhibited the mRNA expression of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) (p < 0.05) and the production of prostaglandins E2 (PGE2) (p < 0.05). Meanwhile, EAF triggered the mRNA expression of interleukin-10 (IL-10) and elicited the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as the expression of its main target gene, heme oxygenase-1 (HO-1) (p < 0.05). These data indicate that EAF attenuates experimental inflammation via the inhibition of proinflammatory mediators and at least in part, by the activation of Nrf2/HO-1 pathway. These effects are likely due to myricetin and quercetin derivatives but the role of other, less abundant components cannot be excluded. Further studies to confirm the relevance of our findings in animal models and to highlight the relative contribution of each component to the anti-inflammatory activity of EAF should be conducted.


Subject(s)
Anti-Inflammatory Agents/chemistry , Cistus/chemistry , Flavonoids/analysis , Phytochemicals/chemistry , Quercetin/analysis , Animals , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Flavonoids/chemistry , Heme Oxygenase-1/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Membrane Proteins/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Quercetin/chemistry , RAW 264.7 Cells
14.
Plants (Basel) ; 9(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153159

ABSTRACT

Pistacia lentiscus leaves are used in several applications, thanks to their polyphenolic abundance. Thiswork aimed to characterize the polyphenols and to optimize the extraction conditions to shorten the time, decrease the consumption of solvent, and to maximize the yield of different classes of phenolics, which have diverse industrial applications. The variables were optimized by applying a Box-Behnken design. Galloyl and myricetin derivatives were the most abundant compounds, and two new tetragalloyl derivatives were identified by LC-MS/MS. According to the models, the maximum yields of polyphenols (51.3 ± 1.8 mg g-1 DW) and tannins (40.2 ± 1.4 mg g-1 DW) were obtained using 0.12 L g-1 of 40% ethanol at 50 °C. The highest content of flavonoids (10.2 ± 0.8 mg g-1 DW) was obtained using 0.13 L g-1 of 50% ethanol at 50 °C, while 0.1 L g-1 of 30% ethanol at 30 °C resulted in higher amounts of myricitrin (2.6 ± 0.19 mg g-1 DW). Our optimized extraction decreased the ethanolic fraction by 25% and halved the time compared to other methods. These conditions can be applied differently to obtain P. lentiscus extracts richer in tannins or flavonoids, which might be employed for various purposes.

15.
Antioxidants (Basel) ; 9(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182252

ABSTRACT

Whether flavonoids play significant antioxidant roles in plants challenged by photooxidative stress of different origin has been largely debated over the last few decades. A critical review of the pertinent literature and our experimentation as well, based on a free-of-scale approach, support an important antioxidant function served by flavonoids in plants exposed to a wide range of environmental stressors, the significance of which increases with the severity of stress. On the other side, some questions need conclusive answers when the putative antioxidant functions of plant flavonoids are examined at the level of both the whole-cell and cellular organelles. This partly depends upon a conclusive, robust, and unbiased definition of "a plant antioxidant", which is still missing, and the need of considering the subcellular re-organization that occurs in plant cells in response to severe stress conditions. This likely makes our deterministic-based approach unsuitable to unveil the relevance of flavonoids as antioxidants in extremely complex biological systems, such as a plant cell exposed to an ever-changing stressful environment. This still poses open questions about how to measure the occurred antioxidant action of flavonoids. Our reasoning also evidences the need of contemporarily evaluating the changes in key primary and secondary components of the antioxidant defense network imposed by stress events of increasing severity to properly estimate the relevance of the antioxidant functions of flavonoids in an in planta situation. In turn, this calls for an in-depth analysis of the sub-cellular distribution of primary and secondary antioxidants to solve this still intricate matter.

16.
Plants (Basel) ; 9(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867243

ABSTRACT

Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and they interact with most crop plants such as cereals, horticultural species, and fruit trees. For this reason, they receive expanding attention for the potential use in sustainable and climate-smart agriculture context. Although several positive effects have been reported on photosynthetic traits in host plants, showing improved performances under abiotic stresses such as drought, salinity and extreme temperature, the involved mechanisms are still to be fully discovered. In this review, some controversy aspects related to AM symbiosis and photosynthesis performances will be discussed, with a specific focus on nitrogen acquisition-mediated by AM fungi.

17.
Plants (Basel) ; 9(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630593

ABSTRACT

Ocimum basilicum (basil) leaves are rich in polyphenols, conferring them a high antioxidant activity. The application of UV-B can be used to maintain the post-harvest nutraceutical quality of basil leaves. We aimed to investigate the effects of pre-harvest UV-B application on polyphenolic and pigment contents, antioxidant capacity, and the visual quality of basil stored leaves. We also evaluated the applicability of the non-invasive Dualex® for monitoring the accumulation of leaf epidermal phenolics (Flav Index). After exposing plants to white light (control) and to supplemental UV-B radiation for 4 d, the leaves were harvested and stored for 7d (TS7). The UV-B leaves showed both a higher phenolic content and antioxidant capacity than the controls at TS7. In addition, the correlations between the Flav Index and phenolic content demonstrated that Dualex® can reliably assess the content of epidermal phenolics, thus confirming its promising utilization as a non-destructive method for monitoring the phytochemical quality of O. basilicum leaves. In conclusion, a pre-harvesting UV-B application may be a tool for enhancing the content of polyphenols and the antioxidant potential of basil stored leaves without detrimental effects on their visual quality. These results are important considering the nutraceutical value of this plant and its wide commercial distribution.

18.
Conserv Physiol ; 8(1): coaa028, 2020.
Article in English | MEDLINE | ID: mdl-32308983

ABSTRACT

Moringa oleifera is a fast-growing hygrophilic tree native to a humid sub-tropical region of India, now widely planted in many regions of the Southern Hemisphere characterized by low soil water availability. The widespread cultivation of this plant worldwide may have led to populations with different physiological and biochemical traits. In this work, the impact of water stress on the physiology and biochemistry of two M. oleifera populations, one from Chaco Paraguayo (PY) and one from Indian Andhra Pradesh (IA) region, was studied in a screenhouse experiment where the water stress treatment was followed by re-watering. Through transcriptome sequencing, 2201 potential genic simple sequence repeats were identified and used to confirm the genetic differentiation of the two populations. Both populations of M. oleifera reduced photosynthesis, water potential, relative water content and growth under drought, compared to control well-watered plants. A complete recovery of photosynthesis after re-watering was observed in both populations, but growth parameters recovered better in PY than in IA plants. During water stress, PY plants accumulated more secondary metabolites, especially ß-carotene and phenylpropanoids, than IA plants, but IA plants invested more into xanthophylls and showed a higher de-epoxidation state of xanthophylls cycle that contributed to protect the photosynthetic apparatus. M. oleifera demonstrated a high genetic variability and phenotypic plasticity, which are key factors for adaptation to dry environments. A higher plasticity (e.g. in PY plants adapted to wet environments) will be a useful trait to endure recurrent but brief water stress episodes, whereas long-term investment of resources into secondary metabolism (e.g. in IA plants adapted to drier environments) will be a successful strategy to cope with prolonged periods of drought. This makes M. oleifera an important resource for agro-forestry in a climate change scenario.

19.
Plant Physiol Biochem ; 151: 556-565, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32315911

ABSTRACT

Arundo donax L. is an invasive grass species with high tolerance to a wide range of environmental stresses. The response of potted A. donax plants to soil stress characterized by prolonged exposure (43 days) to salinity (+Na), to high concentration of phosphorus (+P), and to the combination of high Na and P (+NaP) followed by 14 days of recovery under optimal nutrient solution, was investigated along the entire time-course of the experiment. After an exposure of 43 days, salinity induced a progressive decline in stomatal conductance that hampered A. donax growth through diffusional limitations to photosynthesis and, when combined with high P, reduced the electron transport rate. Isoprene emission from A. donax leaves was stimulated as Na+ concentration raised in leaves. Prolonged growth in P-enriched substrate did not significantly affect A. donax performance, but decreased isoprene emission from leaves. Prolonged exposure of A. donax to + NaP increased the leaf level of H2O2, stimulated the production of carbohydrates, phenylpropanoids, zeaxanthin and increased the de-epoxidation state of the xanthophylls. This might have resulted in a higher stress tolerance that allowed a fast and full recovery following stress relief. Moreover, the high amount of ABA-glucose ester accumulated in leaves of A. donax exposed to + NaP might have favored stomata re-opening further sustaining the observed prompt recovery of photosynthesis. Therefore, prolonged exposure to high P exacerbated the negative effects of salt stress in A. donax plants photosynthetic performances, but enhanced activation of physiological mechanisms that allowed a prompt and full recovery after stress.


Subject(s)
Phosphorus , Poaceae , Salt Stress , Soil , Hydrogen Peroxide , Phosphorus/pharmacology , Photosynthesis , Plant Leaves/drug effects , Poaceae/drug effects , Salt Stress/genetics , Soil/chemistry
20.
Tree Physiol ; 40(8): 1043-1057, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32186735

ABSTRACT

Drought compromises plant's ability to replace transpired water vapor with water absorbed from the soil, leading to extensive xylem dysfunction and causing plant desiccation and death. Short-term plant responses to drought rely on stomatal closure, and on the plant's ability to recover hydraulic functioning after drought relief. We hypothesize a key role for abscisic acid (ABA) not only in the control of stomatal aperture, but also in hydraulic recovery. Young plants of Populus nigra L. were used to investigate possible relationships among ABA, non-structural carbohydrates (NSC) and xylem hydraulic function under drought and after re-watering. In Populus nigra L. plants subjected to drought, water transport efficiency and hydraulic recovery after re-watering were monitored by measuring the percentage loss of hydraulic conductivity (PLC) and stem specific hydraulic conductivity (Kstem). In the same plants ABA and NSC were quantified in wood and bark. Drought severely reduced stomatal conductance (gL) and markedly increased the PLC. Leaf and stem water potential, and stem hydraulic efficiency fully recovered within 24 h after re-watering, but gL values remained low. After re-watering, we found significant correlations between changes in ABA content and hexoses concentration both in wood and bark. Our findings suggest a role for ABA in the regulation of stem carbohydrate metabolism and starch mobilization upon drought relief, possibly promoting the restoration of xylem transport capacity.


Subject(s)
Droughts , Populus , Abscisic Acid , Carbohydrates , Plant Leaves , Plant Stomata , Plant Transpiration , Water , Xylem
SELECTION OF CITATIONS
SEARCH DETAIL