Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062569

ABSTRACT

Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid ß (Aß)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aß-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aß peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Drosophila melanogaster , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Drosophila melanogaster/drug effects , Amyloid beta-Peptides/metabolism , Reactive Oxygen Species/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Apoptosis/drug effects , Autophagy/drug effects , Biological Products/pharmacology , Biological Products/chemistry , Antioxidants/pharmacology , Peptide Fragments/metabolism
2.
Toxics ; 12(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38393197

ABSTRACT

The ciliate Climacostomum virens produces the metabolite climacostol that displays antimicrobial activity and cytotoxicity on human and rodent tumor cells. Given its potential as a backbone in pharmacological studies, we used the fruit fly Drosophila melanogaster to evaluate how the xenobiotic climacostol affects biological systems in vivo at the organismal level. Food administration with climacostol demonstrated its harmful role during larvae developmental stages but not pupation. The midgut of eclosed larvae showed apoptosis and increased generation of reactive oxygen species (ROS), thus demonstrating gastrointestinal toxicity. Climacostol did not affect enteroendocrine cell proliferation, suggesting moderate damage that does not initiate the repairing program. The fact that climacostol increased brain ROS and inhibited the proliferation of neural cells revealed a systemic (neurotoxic) role of this harmful substance. In this line, we found lower expression of relevant antioxidant enzymes in the larvae and impaired mitochondrial activity. Adult offsprings presented no major alterations in survival and mobility, as well the absence of abnormal phenotypes. However, mitochondrial activity and oviposition behavior was somewhat affected, indicating the chronic toxicity of climacostol, which continues moderately until adult stages. These results revealed for the first time the detrimental role of ingested climacostol in a non-target multicellular organism.

SELECTION OF CITATIONS
SEARCH DETAIL