Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617314

ABSTRACT

How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.

2.
Nat Metab ; 6(1): 127-140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172382

ABSTRACT

Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.


Subject(s)
Blastocyst , Embryonic Stem Cells , Mice , Animals , Blastocyst/metabolism , Embryonic Stem Cells/metabolism , Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Amino Acids/metabolism , Mammals/metabolism
3.
Nat Rev Endocrinol ; 19(3): 134-150, 2023 03.
Article in English | MEDLINE | ID: mdl-36446897

ABSTRACT

Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Cell Transformation, Neoplastic/genetics , Cell Differentiation , Metabolic Networks and Pathways
4.
Front Immunol ; 13: 695576, 2022.
Article in English | MEDLINE | ID: mdl-35514976

ABSTRACT

Aberrant innate immune responses to the gut microbiota are causally involved in the pathogenesis of inflammatory bowel diseases (IBD). The exact triggers and main signaling pathways activating innate immune cells and how they modulate adaptive immunity in IBD is still not completely understood. Here, we report that the PI3K/PTEN signaling pathway in dendritic cells enhances IL-6 production in a model of DSS-induced colitis. This results in exacerbated Th1 cell responses and increased mortality in DC-specific PTEN knockout (PTENΔDC) animals. Depletion of the gut microbiota using antibiotics as well as blocking IL-6R signaling rescued mortality in PTENΔDC mice, whereas adoptive transfer of Flt3L-derived PTEN-/- DCs into WT recipients exacerbated DSS-induced colitis and increased mortality. Taken together, we show that the PI3K signaling pathway in dendritic cells contributes to disease pathology by promoting IL-6 mediated Th1 responses.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Dendritic Cells , Dextran Sulfate/adverse effects , Disease Models, Animal , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
5.
Nature ; 603(7901): 477-481, 2022 03.
Article in English | MEDLINE | ID: mdl-35264789

ABSTRACT

The tricarboxylic acid (TCA) cycle is a central hub of cellular metabolism, oxidizing nutrients to generate reducing equivalents for energy production and critical metabolites for biosynthetic reactions. Despite the importance of the products of the TCA cycle for cell viability and proliferation, mammalian cells display diversity in TCA-cycle activity1,2. How this diversity is achieved, and whether it is critical for establishing cell fate, remains poorly understood. Here we identify a non-canonical TCA cycle that is required for changes in cell state. Genetic co-essentiality mapping revealed a cluster of genes that is sufficient to compose a biochemical alternative to the canonical TCA cycle, wherein mitochondrially derived citrate exported to the cytoplasm is metabolized by ATP citrate lyase, ultimately regenerating mitochondrial oxaloacetate to complete this non-canonical TCA cycle. Manipulating the expression of ATP citrate lyase or the canonical TCA-cycle enzyme aconitase 2 in mouse myoblasts and embryonic stem cells revealed that changes in the configuration of the TCA cycle accompany cell fate transitions. During exit from pluripotency, embryonic stem cells switch from canonical to non-canonical TCA-cycle metabolism. Accordingly, blocking the non-canonical TCA cycle prevents cells from exiting pluripotency. These results establish a context-dependent alternative to the traditional TCA cycle and reveal that appropriate TCA-cycle engagement is required for changes in cell state.


Subject(s)
ATP Citrate (pro-S)-Lyase , Cell Differentiation , Citric Acid Cycle , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Animals , Citric Acid/metabolism , Embryonic Stem Cells , Mammals/metabolism , Mice , Mitochondria/metabolism , Pluripotent Stem Cells
6.
Cell Rep ; 38(8): 110420, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196494

ABSTRACT

Dendritic cells (DCs) induce peripheral T cell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral T cell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ T cell expansion, less regulatory T cells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ T cells into Tregs in vitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.


Subject(s)
B7-H1 Antigen , Encephalomyelitis, Autoimmune, Experimental , Janus Kinase 1 , T-Lymphocytes, Regulatory , Animals , Autoimmunity , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Dendritic Cells/metabolism , Immune Tolerance , Janus Kinase 1/immunology , Janus Kinase 1/metabolism , Mice , Peripheral Tolerance
7.
Mol Cell ; 81(18): 3878-3878.e1, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34547243

ABSTRACT

Metabolic networks support cancer cell survival, proliferation, and malignant progression. Cancer cells take up large amounts of nutrients such as glucose and glutamine whose metabolism provides the energy, reducing equivalents, and biosynthetic precursors required to meet the biosynthetic demands of proliferation. Intermediates of glycolysis and the tricarboxylic acid (TCA) cycle provide critical building blocks for synthesis of non-essential amino acids, nucleotides, and fatty acids. To view this SnapShot, open or download the PDF.


Subject(s)
Metabolic Networks and Pathways/physiology , Neoplasms/metabolism , Amino Acids/metabolism , Citric Acid Cycle/physiology , Energy Metabolism , Glucose/metabolism , Glutamine/metabolism , Glycolysis/physiology , Humans , Nucleotides/metabolism
8.
Anal Chem ; 93(3): 1242-1248, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33369389

ABSTRACT

Isotopic-labeling experiments have been valuable to monitor the flux of metabolic reactions in biological systems, which is crucial to understand homeostatic alterations with disease. Experimental determination of metabolic fluxes can be inferred from a characteristic rearrangement of stable isotope tracers (e.g., 13C or 15N) that can be detected by mass spectrometry (MS). Metabolites measured are generally members of well-known metabolic pathways, and most of them can be detected using both gas chromatography (GC)-MS and liquid chromatography (LC)-MS. In here, we show that GC methods coupled to chemical ionization (CI) MS have a clear advantage over alternative methodologies due to GC's superior chromatography separation efficiency and the fact that CI is a soft ionization technique that yields identifiable protonated molecular ion peaks. We tested diverse GC-CI-MS setups, including methane and isobutane reagent gases, triple quadrupole (QqQ) MS in SIM mode, or selected ion clusters using optimized narrow windows (∼10 Da) in scan mode, and standard full scan methods using high resolution GC-(q)TOF and GC-Orbitrap systems. Isobutane as a reagent gas in combination with both low-resolution (LR) and high-resolution (HR) MS showed the best performance, enabling precise detection of isotopologues in most metabolic intermediates of central carbon metabolism. Finally, with the aim of overcoming manual operations, we developed an R-based tool called isoSCAN that automatically quantifies all isotopologues of intermediate metabolites of glycolysis, TCA cycle, amino acids, pentose phosphate pathway, and urea cycle, from LRMS and HRMS data.


Subject(s)
Butanes/metabolism , Metabolomics , Butanes/analysis , Gas Chromatography-Mass Spectrometry , Gases/analysis , Gases/metabolism , Isotope Labeling
9.
Nat Metab ; 2(12): 1427-1442, 2020 12.
Article in English | MEDLINE | ID: mdl-33199895

ABSTRACT

Adipose tissue macrophages (ATMs) display tremendous heterogeneity depending on signals in their local microenvironment and contribute to the pathogenesis of obesity. The phosphoinositide 3-kinase (PI3K) signalling pathway, antagonized by the phosphatase and tensin homologue (PTEN), is important for metabolic responses to obesity. We hypothesized that fluctuations in macrophage-intrinsic PI3K activity via PTEN could alter the trajectory of metabolic disease by driving distinct ATM populations. Using mice harbouring macrophage-specific PTEN deletion or bone marrow chimeras carrying additional PTEN copies, we demonstrate that sustained PI3K activity in macrophages preserves metabolic health in obesity by preventing lipotoxicity. Myeloid PI3K signalling promotes a beneficial ATM population characterized by lipid uptake, catabolism and high expression of the scavenger macrophage receptor with collagenous structure (MARCO). Dual MARCO and myeloid PTEN deficiencies prevent the generation of lipid-buffering ATMs, reversing the beneficial actions of elevated myeloid PI3K activity in metabolic disease. Thus, macrophage-intrinsic PI3K signalling boosts metabolic health by driving ATM programmes associated with MARCO-dependent lipid uptake.


Subject(s)
Adipose Tissue/metabolism , Lipid Metabolism/genetics , Macrophages/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Bone Marrow Transplantation , Cell Differentiation , Chimera , Glucose Tolerance Test , Lipidomics , Macrophages/pathology , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Receptors, Immunologic/genetics , Signal Transduction/genetics
10.
Aging Cell ; 19(11): e13244, 2020 11.
Article in English | MEDLINE | ID: mdl-33085187

ABSTRACT

Bone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here, we identify microRNA-146a (miR-146a) as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR-146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR-146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR-146a-deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR-146a target genes Wnt1 and Wnt5a parallels bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR-146a-deficient mice are protected from ovariectomy-induced bone loss. In humans, the levels of miR-146a are increased in patients suffering fragility fractures in comparison with those who do not. These data identify miR-146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR-146a might be a powerful therapeutic target to prevent age-related bone dysfunctions such as the development of bone marrow adiposity and osteoporosis.


Subject(s)
MicroRNAs/genetics , Osteoporosis/genetics , Animals , Bone Resorption/genetics , Bone Resorption/pathology , Cell Differentiation/physiology , Epigenesis, Genetic , Female , Male , Mice , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoporosis/pathology , Wnt-5a Protein/metabolism , Wnt1 Protein/metabolism
11.
Nat Commun ; 11(1): 431, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969567

ABSTRACT

Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.


Subject(s)
Arginine/metabolism , Giant Cells/immunology , Animals , Arthritis/genetics , Arthritis/metabolism , Arthritis/physiopathology , Bone Remodeling , Citric Acid Cycle , Female , Giant Cells/cytology , Humans , Interleukin-4/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/genetics , RANK Ligand/metabolism
12.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31784108

ABSTRACT

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon Type I/immunology , Liver/metabolism , Lymphocytic choriomeningitis virus/immunology , Receptor, Interferon alpha-beta/metabolism , Animals , Arginine/blood , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Hepatocytes/metabolism , Liver/immunology , Liver/virology , Lymphocytic Choriomeningitis/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ornithine/blood , Ornithine Carbamoyltransferase/genetics , Signal Transduction/immunology , Urea/metabolism , Vero Cells
13.
Am J Physiol Endocrinol Metab ; 317(4): E597-E604, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31386565

ABSTRACT

It has been suggested that interleukin-6 (IL-6) produced by adipocytes in obesity leads to liver insulin resistance, although this hypothesis has never been definitively tested. Accordingly, we did so by generating adipocyte-specific IL-6-deficient (AdipoIL-6-/-) mice and studying them in the context of diet-induced and genetic obesity. Mice carrying two floxed alleles of IL-6 (C57Bl/6J) were crossed with Cre recombinase-overexpressing mice driven by the adiponectin promoter to generate AdipoIL-6-/- mice. AdipoIL-6-/- and floxed littermate controls were fed a standard chow or high-fat diet (HFD) for 16 wk and comprehensively metabolically phenotyped. In addition to a diet-induced obesity model, we also examined the role of adipocyte-derived IL-6 in a genetic model of obesity and insulin resistance by crossing the AdipoIL-6-/- mice with leptin-deficient (ob/ob) mice. As expected, mice on HFD and ob/ob mice displayed marked weight gain and increased fat mass compared with chow-fed and ob/+ (littermate control) animals, respectively. However, deletion of IL-6 from adipocytes in either model had no effect on glucose tolerance or fasting hyperinsulinemia. We concluded that adipocyte-specific IL-6 does not contribute to whole body glucose intolerance in obese mice.


Subject(s)
Adipocytes/metabolism , Glucose Intolerance/genetics , Interleukin-6/genetics , Obesity/genetics , Weight Gain/genetics , Adiponectin/biosynthesis , Adiponectin/genetics , Adiposity/genetics , Animals , Body Composition/genetics , Diet, High-Fat , Glucose Intolerance/etiology , Insulin Resistance/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Obesity/complications , Obesity/metabolism
14.
Ann Rheum Dis ; 77(10): 1490-1497, 2018 10.
Article in English | MEDLINE | ID: mdl-29959183

ABSTRACT

OBJECTIVES: Bone destruction in rheumatoid arthritis is mediated by osteoclasts (OC), which are derived from precursor cells of the myeloid lineage. The role of the two monocyte subsets, classical monocytes (expressing CD115, Ly6C and CCR2) and non-classical monocytes (which are CD115 positive, but low in Ly6C and CCR2), in serving as precursors for OC in arthritis is still elusive. METHODS: We investigated CCR2-/- mice, which lack circulating classical monocytes, crossed into hTNFtg mice for the extent of joint damage. We analysed monocyte subsets in hTNFtg and K/BxN serum transfer arthritis by flow cytometry. We sorted monocyte subsets and analysed their potential to differentiate into OC and their transcriptional response in response to RANKL by RNA sequencing. With these data, we performed a gene ontology enrichment analysis and gene set enrichment analysis. RESULTS: We show that in hTNFtg arthritis local bone erosion and OC generation are even enhanced in the absence of CCR2. We further show the numbers of non-classical monocytes in blood are elevated and are significantly correlated with histological signs of joint destruction. Sorted non-classical monocytes display an increased capacity to differentiate into OCs. This is associated with an increased expression of signal transduction components of RANK, most importantly TRAF6, leading to an increased responsiveness to RANKL. CONCLUSION: Therefore, non-classical monocytes are pivotal cells in arthritis tissue damage and a possible target for therapeutically intervention for the prevention of inflammatory joint damage.


Subject(s)
Arthritis, Experimental/physiopathology , Arthritis, Rheumatoid/physiopathology , Bone Resorption/physiopathology , Monocytes/physiology , Osteoclasts/physiology , Animals , Arthritis, Experimental/complications , Arthritis, Rheumatoid/complications , Bone Resorption/etiology , Cell Differentiation , Disease Models, Animal , Flow Cytometry , Mice , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, CCR2/metabolism , Signal Transduction/physiology , TNF Receptor-Associated Factor 6/metabolism
15.
J Autoimmun ; 82: 74-84, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28545737

ABSTRACT

Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis.


Subject(s)
Arthritis/genetics , Arthritis/metabolism , Fibroblasts/metabolism , Joints/metabolism , Joints/pathology , MicroRNAs/genetics , Animals , Arthritis/pathology , Arthritis, Experimental , Bone Resorption/genetics , Cell Proliferation , Disease Models, Animal , Fibroblasts/pathology , Gene Expression , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , RNA Interference , Synovial Membrane/cytology , Synovial Membrane/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
16.
J Immunol ; 195(6): 2560-70, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26246144

ABSTRACT

The PI3K signaling cascade in APCs has been recognized as an essential pathway to initiate, maintain, and resolve immune responses. In this study, we demonstrate that a cell type-specific loss of the PI3K antagonist phosphatase and tensin homolog (PTEN) in myeloid cells renders APCs toward a regulatory phenotype. APCs deficient for PTEN exhibit reduced activation of p38 MAPK and reduced expression of T cell-polarizing cytokines. Furthermore, PTEN deficiency leads to upregulation of markers for alternative activation, such as Arginase 1, with concomitant downregulation of inducible NO synthase in APCs in vitro and in vivo. As a result, T cell polarization was dysfunctional in PTEN(-/-) APCs, in particular affecting the Th17 cell subset. Intriguingly, mice with cell type-specific deletions of PTEN-targeting APCs were protected from experimental autoimmune encephalomyelitis, which was accompanied by a pronounced reduction of IL-17- and IL-22-producing autoreactive T cells and reduced CNS influx of classically activated monocytes/macrophages. These observations support the notion that activation of the PI3K signaling cascade promotes regulatory APC properties and suppresses pathogenic T cell polarization, thereby reducing the clinical symptoms and pathology of experimental autoimmune encephalomyelitis.


Subject(s)
Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , PTEN Phosphohydrolase/genetics , Th17 Cells/immunology , Animals , Arginase/biosynthesis , Autoimmunity/immunology , CD11c Antigen/biosynthesis , Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Enzyme Activation/genetics , Enzyme Activation/immunology , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Lymphocyte Activation , Macrophage Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Nitric Oxide Synthase Type II/biosynthesis , Peptide Fragments/immunology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/immunology , p38 Mitogen-Activated Protein Kinases/immunology , Interleukin-22
17.
Arthritis Res Ther ; 17: 230, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26307404

ABSTRACT

INTRODUCTION: Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood. METHODS: We measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN(-/-)) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN(-/-) mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells. RESULTS: We show that myeloid-specific PTEN(-/-) mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions. CONCLUSIONS: These data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.


Subject(s)
Antigen-Presenting Cells/immunology , Arthritis, Experimental/immunology , Autoimmune Diseases/immunology , PTEN Phosphohydrolase/immunology , Th17 Cells/immunology , Animals , Antigen-Presenting Cells/metabolism , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Blotting, Western , Cytokines/blood , Cytokines/genetics , Cytokines/immunology , Flow Cytometry , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...