Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(19)2023 09 27.
Article in English | MEDLINE | ID: mdl-37835437

ABSTRACT

Osteosarcoma (OS) is the most common primary malignancy of the bone, highly aggressive and metastasizing, and it mainly affects children and adolescents. The current standard of care for OS is a combination of surgery and chemotherapy. However, these treatment options are not always successful, especially in cases of metastatic or recurrent osteosarcomas. For this reason, research into new therapeutic strategies is currently underway, and immunotherapies have received considerable attention. Mifamurtide stands out among the most studied immunostimulant drugs; nevertheless, there are very conflicting opinions on its therapeutic efficacy. Here, we aimed to investigate mifamurtide efficacy through in vitro and in vivo experiments. Our results led us to identify a new possible target useful to improve mifamurtide effectiveness on metastatic OS: the cytokine interleukin-10 (IL-10). We provide experimental evidence that the synergic use of an anti-IL-10 antibody in combination with mifamurtide causes a significantly increased mortality rate in highest-grade OS cells and lower metastasis in an in vivo model compared with mifamurtide alone. Overall, our data suggest that mifamurtide in combination with an anti-IL-10 antibody could be proposed as a new treatment protocol to be studied to improve the outcomes of OS patients.

2.
Cancer Gene Ther ; 30(6): 890-904, 2023 06.
Article in English | MEDLINE | ID: mdl-36854895

ABSTRACT

Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via ß-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of ß3-adrenergic receptor (ß3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the ß3-AR modulation influenced the host immune system response against tumor. Results demonstrated that ß3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, ß3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that ß3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.


Subject(s)
Interferon-gamma , Neuroblastoma , Humans , Animals , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lymphocytes, Tumor-Infiltrating , Neuroblastoma/genetics , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Tumor Microenvironment
3.
Front Oncol ; 12: 889634, 2022.
Article in English | MEDLINE | ID: mdl-35756654

ABSTRACT

ß3-adrenergic receptor (ß3-AR) is the last ß-adrenoceptor subtype identified. ß3-AR is widely expressed and regulates numerous physiological processes, and it is also a potential target for the treatment of many diseases, including cancers. For some types of cancers, bone marrow transplant (BMT) represents a valid therapeutic support, especially in the case of the necessity of high-dose chemotherapy and radiotherapy. For a successful BMT, it is necessary that a donor's hematopoietic stem cells (HSCs) correctly reach the staminal niche in the recipient's bone marrow (BM) and contribute to restore normal hematopoiesis in order to rapidly repopulate BM and provide all the healthy blood cells of which the patient needs. Generally, it takes a long time. Control and accelerate homing and engraftment of HSCs could represent a helpful approach to avoid the complications and undesirable effects of BMT. The evidence that the ß-adrenergic system has a role in the BM can be found in different studies, and this leads us to hypothesize that studying this field could be interesting to meliorate the most critical aspects of a BMT. Here, we collected the data present in literature about the role of ß3-AR in the BM with the purpose of discovering a possible utility of ß3-AR modulation in regulating HSC trafficking and hematopoiesis.

4.
Front Pharmacol ; 12: 697912, 2021.
Article in English | MEDLINE | ID: mdl-34646131

ABSTRACT

The mechanisms involved in the development and maintenance of cancer pain remain largely unidentified. Recently, it has been reported that ß-adrenergic receptors (ß-ARs), mainly ß2-and ß3-ARs, contribute to tumor proliferation and progression and may favor cancer-associated pain and neuroinflammation. However, the mechanism underlying ß-ARs in cancer pain is still unknown. Here, we investigated the role of ß1-, ß2-and ß3-ARs in a mouse model of cancer pain generated by the para-tibial injection of K7M2 osteosarcoma cells. Results showed a rapid tumor growth in the soft tissue associated with the development of mechanical allodynia in the hind paw ipsilateral to the injected site. In addition to reduce tumor growth, both propranolol and SR59230A, ß1-/ß2-and ß3-AR antagonists, respectively, attenuated mechanical allodynia, the number of macrophages and an oxidative stress by-product accumulated in the ipsilateral tibial nerve. The selective ß1-AR antagonist atenolol was able to slightly reduce the tumor growth but showed no effect in reducing the development of mechanical allodynia. Results suggest that the development of the mechanical allodynia in K7M2 osteosarcoma-bearing mice is mediated by oxidative stress associated with the recruitment of neural macrophages, and that antagonism of ß2-and ß3-ARs contribute not solely to the reduction of tumor growth, but also in cancer pain. Thus, the targeting of the ß2-and ß3-ARs signaling may be a promising therapeutic strategy against both tumor progression and the development of cancer-evoke pain in osteosarcoma.

5.
Cancers (Basel) ; 13(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34298765

ABSTRACT

Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.

6.
Cancer Res ; 81(12): 3387-3401, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33771895

ABSTRACT

Although macrophages (MΦ) are known to play a central role in neuropathic pain, their contribution to cancer pain has not been established. Here we report that depletion of sciatic nerve resident MΦs (rMΦ) in mice attenuates mechanical/cold hypersensitivity and spontaneous pain evoked by intraplantar injection of melanoma or lung carcinoma cells. MΦ-colony stimulating factor (M-CSF) was upregulated in the sciatic nerve trunk and mediated cancer-evoked pain via rMΦ expansion, transient receptor potential ankyrin 1 (TRPA1) activation, and oxidative stress. Targeted deletion of Trpa1 revealed a key role for Schwann cell TRPA1 in sciatic nerve rMΦ expansion and pain-like behaviors. Depletion of rMΦs in a medial portion of the sciatic nerve prevented pain-like behaviors. Collectively, we identified a feed-forward pathway involving M-CSF, rMΦ, oxidative stress, and Schwann cell TRPA1 that operates throughout the nerve trunk to signal cancer-evoked pain. SIGNIFICANCE: Schwann cell TRPA1 sustains cancer pain through release of M-CSF and oxidative stress, which promote the expansion and the proalgesic actions of intraneural macrophages. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3387/F1.large.jpg.


Subject(s)
Cancer Pain/pathology , Hyperalgesia/pathology , Macrophages/immunology , Melanoma, Experimental/complications , Peripheral Nerves/immunology , Schwann Cells/immunology , TRPA1 Cation Channel/physiology , Animals , Cancer Pain/etiology , Cancer Pain/metabolism , Female , Hyperalgesia/etiology , Hyperalgesia/metabolism , Lung Neoplasms/complications , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Oxid Med Cell Longev ; 2020: 7534693, 2020.
Article in English | MEDLINE | ID: mdl-32855766

ABSTRACT

The use of nutraceuticals during cancer treatment is a long-lasting debate. Berberine (BBR) is an isoquinoline quaternary alkaloid extracted from a variety of medicinal plants. BBR has been shown to have therapeutic effects in different pathologies, particularly in cancer, where it affects pathways involved in tumor progression. In neuroblastoma, the most common extracranial childhood solid tumor, BBR, reduces tumor growth by regulating both stemness and differentiation features and by inducing apoptosis. At the same time, the inhibition of ß-adrenergic signaling leads to a reduction in growth and increase of differentiation of neuroblastoma. In this review, we summarize the possible beneficial effects of BBR in counteracting tumor growth and progression in various types of cancer and, in particular, in neuroblastoma. However, BBR administration, besides its numerous beneficial effects, presents a few side effects due to inhibition of MAO A enzyme in neuroblastoma cells. Therefore, herein, we proposed a novel therapeutic strategy to overcome side effects of BBR administration consisting of concomitant administration of BBR together with ß-blockers in neuroblastoma.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Berberine/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Disease Progression , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/pharmacology , Animals , Berberine/chemistry , Cell Proliferation/drug effects , Dietary Supplements , Humans
8.
Article in English | MEDLINE | ID: mdl-32565314

ABSTRACT

The bioactive sphingolipid sphingosine 1-phosphate (S1P) has emerged in the last three decades as main regulator of key cellular processes including cell proliferation, survival, migration and differentiation. A crucial role for this sphingolipid has been recognized in skeletal muscle cell biology both in vitro and in vivo. S1P lyase (SPL) is responsible for the irreversible degradation of S1P and together with sphingosine kinases, the S1P producing enzymes, regulates cellular S1P levels. In this study is clearly showed that the blockade of SPL by pharmacological or RNA interference approaches induces myogenic differentiation of C2C12 myoblasts. Moreover, down-regulation of the specific S1P transporter spinster homolog 2 (Spns2) abrogates myogenic differentiation brought about by SPL inhibition or down-regulation, pointing at a role of extracellular S1P in the pro-myogenic action induced by SPL blockade. Furthermore, also S1P2 receptor down-regulation was found to abrogate the pro-myogenic effect of SPL blockade. These results provide further proof that inside-out S1P signaling is critically implicated in skeletal muscle biology and provide support to the concept that the specific targeting of SPL could represent an exploitable strategy to treat skeletal muscle disorders.


Subject(s)
Aldehyde-Lyases/metabolism , Anion Transport Proteins/metabolism , Cell Differentiation , Myoblasts/cytology , Sphingosine-1-Phosphate Receptors/metabolism , Aldehyde-Lyases/antagonists & inhibitors , Animals , Anion Transport Proteins/genetics , Cell Line , Mice , Sphingosine-1-Phosphate Receptors/genetics
9.
Int J Mol Sci ; 21(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545695

ABSTRACT

ß-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (ß3-AR) is associated with different tumor conditions. Currently, there are few data concerning ß3-AR in myeloid malignancies. Here, we evaluated ß3-AR in myeloid leukemia cell lines and the effect of ß3-AR antagonist SR59230A. In addition, we investigated the potential role of ß3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed ß3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, ß3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to ß3-AR as a new target and ß3-AR blockade as a potential approach in myeloid leukemias.


Subject(s)
Adrenergic beta-3 Receptor Antagonists/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid/metabolism , Propanolamines/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation , Drug Synergism , Fetal Blood/cytology , Fetal Blood/drug effects , Fetal Blood/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid/drug therapy , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism
10.
Cancers (Basel) ; 12(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486190

ABSTRACT

Melanoma is one of the most aggressive types of cancer and the most deadly skin cancer. According to World Health Organization, about 132,000 melanoma skin cancers occur globally each year. Thanks to the efficacy of new therapies, life expectation has been improved over the last years. However, some malignant melanomas still remain unresponsive to these therapies. The ß-adrenergic system, among its many physiological roles, has been recognized as the main mediator of stress-related tumorigenic events. In particular, catecholamine activation of ß-adrenergic receptors (ß-ARs) affects several processes that sustain cancer progression. Among the ß-AR subtypes, the ß3-AR is emerging as an important regulator of tumorigenesis. In this review, we summarize data of different experimental studies focused on ß3-AR involvement in tumor development in various types of cancer and, particularly, in melanoma. Taken together, the preclinical evidences reported in this review demonstrate the crucial role of ß3-AR in regulating the complex signaling network driving melanoma progression. Therefore, a need exists to further disseminate this new concept and to investigate more deeply the role of ß3-AR as a possible therapeutic target for counteracting melanoma progression at clinical level.

11.
Article in English | MEDLINE | ID: mdl-32244061

ABSTRACT

Sphingosine kinases (SphK) catalyse the formation of sphingosine-1-phosphate (S1P) and play important roles in the cardiovascular, nervous and immune systems. We have shown before that Gq-coupled receptors induce a rapid and long-lasting translocation of SphK1 to the plasma membrane and cross-activation of S1P receptors. Here, we further addressed Gq regulation of SphK1 by analysing the influence of the WD40 repeat protein, WDR36. WDR36 has been described as a scaffold tethering Gαq to phospholipase C (PLC)-ß and the thromboxane A2 receptor-ß (TPß receptor). Overexpression of WDR36 in HEK-293 cells enhanced TPß receptor-induced inositol phosphate production, as reported (Cartier et al. 2011), but significantly attenuated inositol phosphate production induced by muscarinic M3 and bradykinin B2 receptors. In agreement with its effect on PLCß, WDR36 augmented TPß receptor-induced [Ca2+]i increases. Surprisingly, WDR36 also augmented M3 receptor-induced [Ca2+]i increases, which was due to increased Ca2+ mobilization while the Ca2+ content of thapsigargin-sensitive stores remained unaltered. Interestingly, overexpression of WDR36 significantly delayed SphK1 translocation by Gq-coupled M3, B2 and H1 receptors in HEK-293 cells, while TPß receptor-induced SphK1 translocation was generally slow and not altered by WDR36 in these cells. Finally, in C2C12 myoblasts, overexpression of WDR36 delayed SphK1 translocation induced by B2 receptors. It is concluded that WDR36 reduces signalling of Gq-coupled receptors other than TPß towards PLC and SphK1, most likely by scavenging Gαq and PLCß. Our results support a role of WDR36 in orchestration of Gq signalling complexes, and might help to functionally unravel its genetic association with asthma and allergy.


Subject(s)
Eye Proteins/metabolism , Phospholipase C beta/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Receptors, Thromboxane/metabolism , Signal Transduction , Animals , Calcium/metabolism , Eye Proteins/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Mice , Myoblasts/metabolism
12.
Int J Mol Sci ; 21(4)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093135

ABSTRACT

Although there is an increasing evidence that cancer stem cell (CSC) niches in the tumor microenvironment (TME) plays a crucial role in sustaining solid tumors progression, several molecular players involved in this regulation still remain unknown. The role of ß-adrenergic signaling in enhancing tumor growth through ß2-adrenoreceptors (ß2-ARs) has been confirmed in different cancer models, but the role played by the ß3-adrenergic receptor (ß3-AR) has recently emerged. Previous studies showed that ß3-AR promotes cancer growth through the activation of different stromal cells in the TME, and leads to melanoma malignancy progression through inflammation, angiogenesis, and immunotolerance. Here we show that in B16 melanoma-bearing mice, the pharmacological ß3-AR blockade is able to reduce the expression of CSC markers, and to induce a differentiated phenotype of hematopoietic subpopulations in TME. In particular, cytofluorimetric analysis (FACS) of the tumor mass shows that ß3-AR antagonist SR59230A promotes hematopoietic differentiation as indicated by increased ratios of lymphoid/hematopoietic stem cells (HSCs) and of myeloid progenitor cells/HSCs, and increases the number of Ter119 and natural killer (NK) precursor cells, and of granulocyte precursors, indicating active hematopoiesis within the tumor tissue. Moreover, pharmacological antagonism of ß3-AR induces mesenchymal stem cell (MSC) differentiation into adipocytes subtracting a potential renewal of the stem compartment by these cells. Here we demonstrate that ß3-AR blockade in the TME by inducing the differentiation of different stromal cells at the expense of stemness traits could possibly have a favorable effect on the control of melanoma progression.


Subject(s)
Adrenergic beta-3 Receptor Antagonists/pharmacology , Melanoma, Experimental/metabolism , Neoplasm Proteins , Neoplastic Stem Cells/metabolism , Propanolamines/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Tumor Microenvironment/drug effects , Animals , Cell Line, Tumor , Male , Melanoma, Experimental/pathology , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism
13.
Oncogene ; 39(2): 368-384, 2020 01.
Article in English | MEDLINE | ID: mdl-31477835

ABSTRACT

Neuroblastoma (NB) is the most frequently observed among extracranial pediatric solid tumors. It displays an extreme clinical heterogeneity, in particular for the presentation at diagnosis and response to treatment, often depending on cancer cell differentiation/stemness. The frequent presence of elevated hematic and urinary levels of catecholamines in patients affected by NB suggests that the dissection of adrenergic system is crucial for a better understanding of this cancer. ß3-adrenoreceptor (ß3-AR) is the last identified member of adrenergic receptors, involved in different tumor conditions, such as melanoma. Multiple studies have shown that the dysregulation of the bioactive lipid sphingosine 1-phosphate (S1P) metabolism and signaling is involved in many pathological diseases including cancer. However, whether S1P is crucial for NB progression and aggressiveness is still under investigation. Here we provide experimental evidence that ß3-AR is expressed in NB, both human specimens and cell lines, where it is critically involved in the activation of proliferation and the regulation between stemness/differentiation, via its functional cross-talk with sphingosine kinase 2 (SK2)/S1P receptor 2 (S1P2) axis. The specific antagonism of ß3-AR by SR59230A inhibits NB growth and tumor progression, by switching from stemness to cell differentiation both in vivo and in vitro through the specific blockade of SK2/S1P2 signaling.


Subject(s)
Adrenergic beta-3 Receptor Antagonists/pharmacology , Neuroblastoma/drug therapy , Receptors, Adrenergic, beta-3/genetics , Small-Conductance Calcium-Activated Potassium Channels/genetics , Sphingosine-1-Phosphate Receptors/genetics , Animals , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Lysophospholipids/metabolism , Mice , Neuroblastoma/genetics , Neuroblastoma/pathology , Neurons/drug effects , Propanolamines/pharmacology , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Tumor Hypoxia/drug effects
14.
FEBS Open Bio ; 9(6): 1082-1096, 2019 06.
Article in English | MEDLINE | ID: mdl-31006177

ABSTRACT

Oxidative stress and abnormal osteocyte apoptosis are often related to dysregulation of bone turnover and chronic bone loss, and so fruit and vegetables with high antioxidant potential may play an important role in the prevention and/or management of osteoporosis. Osteocytes are the main regulators of bone remodelling. For the first time, we demonstrate here that blueberry juice (BJ), obtained from Vaccinium myrtillus, rich in polyphenols, shows antioxidant and antiosteoclastogenic properties in MLO-Y4 osteocytes. We report that BJ prevents oxidative stress-induced apoptosis and reverses the increase in receptor activator of nuclear factor κB ligand and sclerostin expression, crucial factors for osteoclast activation and bone resorption. BJ is also able to prevent oxidative stress-induced cell cytotoxicity in bone marrow mesenchymal stromal cells (MSCs), which are considered to be an important tool for cell therapy in bone disorders. No significant difference in preventing these events was observed between BJ and blueberry dry extract containing equal amounts of total soluble polyphenols. We have also shown that blueberry acts as both an antioxidant and an activator of sirtuin type 1, a class III histone deacetylase involved in cell death regulation and considered a molecular target for blocking bone resorption without affecting osteoclast survival. Overall, these novel data obtained in osteocytes and MSCs may help us clarify the mechanisms by which blueberry counteracts oxidative stress-induced damage in bone remodelling and osteogenesis at the cellular and molecular level. Our findings are consistent with the reported beneficial effects of blueberry on bone tissue reported in animal studies, which suggest that blueberry may be a useful supplement for the prevention and/or management of osteoporosis and osteogenic process.


Subject(s)
Antioxidants/pharmacology , Blueberry Plants/chemistry , Fruit and Vegetable Juices , Mesenchymal Stem Cells/metabolism , Osteocytes/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Sirtuin 1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Fruit/chemistry , Humans , Mice , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism
15.
Br J Pharmacol ; 176(14): 2509-2524, 2019 07.
Article in English | MEDLINE | ID: mdl-30874296

ABSTRACT

BACKGROUND AND PURPOSE: Stress-related catecholamines have a role in cancer and ß-adrenoceptors; specifically, ß2 -adrenoceptors have been identified as new targets in treating melanoma. Recently, ß3 -adrenoceptors have shown a pleiotropic effect on melanoma micro-environment leading to cancer progression. However, the mechanisms by which ß3 -adrenoceptors promote this progression remain poorly understood. Catecholamines affect the immune system by modulating several factors that can alter immune cell sub-population homeostasis. Understanding the mechanisms of cancer immune-tolerance is one of the most intriguing challenges in modern research. This study investigates the potential role of ß3 -adrenoceptors in immune-tolerance regulation. EXPERIMENTAL APPROACH: A mouse model of melanoma in which syngeneic B16-F10 cells were injected in C57BL-6 mice was used to evaluate the effect of ß-adrenoceptor blockade on the number and activity of immune cell sub-populations (Treg, NK, CD8, MDSC, macrophages, and neutrophils). Pharmacological and molecular approaches with ß-blockers (propranolol and SR59230A) and specific ß-adrenoceptor siRNAs targeting ß2 - or ß3 -adrenoceptors were used. KEY RESULTS: Only ß3 -, but not ß2 -adrenoceptors, were up-regulated under hypoxia in peripheral blood mononuclear cells and selectively expressed in immune cell sub-populations including Treg, MDSC, and NK. SR59230A and ß3 -adrenoceptor siRNAs increased NK and CD8 number and cytotoxicity, while they attenuated Treg and MDSC sub-populations in the tumour mass, blood, and spleen. SR59230A and ß3 -adrenoceptor siRNAs increased the ratio of M1/M2 macrophages and N1 granulocytes. CONCLUSIONS AND IMPLICATIONS: Our data suggest that ß3 -adrenoceptors are involved in immune-tolerance, which opens the way for new strategic therapies to overcome melanoma growth. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Subject(s)
Melanoma, Experimental/immunology , Receptors, Adrenergic, beta-3/immunology , Skin Neoplasms/immunology , Adrenergic beta-Antagonists/pharmacology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Disease Models, Animal , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Receptors, Adrenergic, beta-3/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Tumor Cells, Cultured
16.
Oxid Med Cell Longev ; 2018: 6816508, 2018.
Article in English | MEDLINE | ID: mdl-30538804

ABSTRACT

The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that ß3-adrenergic receptor (ß3-AR) is involved in tumor progression, playing an important role in metastasis. Among ß-adrenergic receptors, ß3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. ß3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, ß3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that ß3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The ß3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific ß3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of ß3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.


Subject(s)
Adrenergic beta-3 Receptor Antagonists/pharmacology , Embryonic Stem Cells/metabolism , Melanoma/metabolism , Mitochondria/metabolism , Propanolamines/pharmacology , Animals , Cell Line , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/pathology , Humans , Melanoma/pathology , Mice , Mitochondria/drug effects , Receptors, Adrenergic, beta-3/metabolism
17.
Cell Signal ; 45: 110-121, 2018 05.
Article in English | MEDLINE | ID: mdl-29408301

ABSTRACT

Skeletal muscle tissue retains a remarkable regenerative capacity due to the activation of resident stem cells that in pathological conditions or after tissue damage proliferate and commit themselves into myoblasts. These immature myogenic cells undergo differentiation to generate new myofibers or repair the injured ones, giving a strong contribution to muscle regeneration. Cytokines and growth factors, potently released after tissue injury by leukocytes and macrophages, are not only responsible of the induction of the initial inflammatory response, but can also affect skeletal muscle regeneration. Growth factors exploit sphingosine kinase (SK), the enzyme that catalyzes the production of sphingosine 1-phosphate (S1P), to exert their biological effects in skeletal muscle. In this paper we show for the first time that bradykinin (BK), the leading member of kinin/kallikrein system, is able to induce myogenic differentiation in C2C12 myoblasts. Moreover, evidence is provided that SK1, the specific S1P-transporter spinster homolog 2 (Spns2) and S1P2 receptor are involved in the action exerted by BK, since pharmacological inhibition/antagonism or specific down-regulation significantly alter BK-induced myogenic differentiation. Moreover, the molecular mechanism initiated by BK involves a rapid translocation of SK1 to plasma membrane, analyzed by time-lapse immunofluorescence analysis. The present study highlights the role of SK1/Spns2/S1P receptor 2 signaling axis in BK-induced myogenic differentiation, thus confirming the crucial involvement of this pathway in skeletal muscle cell biology.


Subject(s)
Anion Transport Proteins/metabolism , Bradykinin/pharmacology , Cell Differentiation/drug effects , Muscle Development/drug effects , Myoblasts, Skeletal/cytology , Receptors, Lysosphingolipid/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Animals , Cell Line , Mice , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Signal Transduction , Sphingosine-1-Phosphate Receptors
18.
J Mol Med (Berl) ; 93(10): 1145-57, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25952146

ABSTRACT

UNLABELLED: The interaction between endothelial cells and pericytes is crucial for the stabilization of newly formed vessels in angiogenesis. The comprehension of the mechanisms regulating pericyte recruitment might open therapeutical perspectives on vascular-related pathologies. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that derives from sphingomyelin catabolism and regulates biological functions in cell survival, proliferation, and differentiation. In this study, we aimed to identify the role of S1P axis in the intercellular communication between human mesenchymal progenitor mesoangioblasts (MAB) and endothelial cells (human microvascular endothelial cells (H-MVEC)) in the formation of capillary-like structures. We demonstrated that the S1P biosynthetic pathway brought about by sphingosine kinases (SK) SK1 and SK2 as well as spinster homolog 2 (SPNS2) transporter in H-MVEC is crucial for MAB migration measured by Boyden chambers and for the formation and stabilization of capillary-like structures in a 3D Matrigel culture. Moreover, the conditioned medium (CM) harvested from H-MVEC, where SK1, SK2, and SPNS2 were down-regulated, exerted a significantly diminished effect on MAB capillary morphogenesis and migration. Notably, we demonstrated that S1P1 and S1P3 receptors were positively involved in CM-induced capillary-like formation and migration, while S1P2 exerted a negative role on CM-induced migratory action of MAB. Finally, SK inhibition as well as MAB S1P1 and S1P3 down-regulation impaired H-MVEC-MAB cross-talk significantly reducing in vivo angiogenesis evaluated by Matrigel plug assay. These findings individuate novel targets for the employment of MAB in vascular-related pathologic conditions. KEY MESSAGE: • Down-regulation of SK1/2 in H-MVEC impaired vessel formation when cultured with MAB. • H-MVEC SPNS2 is critical for morphogenesis and migration induced by H-MVEC CM of MAB. • CM from SK1- and SK2-siRNA H-MVEC impaired morphogenesis and migration of MAB. • S1P1/3 were involved on CM-induced morphogenesis and migration of MAB. • Matrigel plug assay showed the role of S1P axis in MAB-endothelial cell interaction.


Subject(s)
Anion Transport Proteins/physiology , Endothelial Cells/physiology , Lysophospholipids/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Sphingosine/analogs & derivatives , Stem Cells/physiology , Cell Line , Cells, Cultured , Coculture Techniques , Humans , Neovascularization, Physiologic , Phosphotransferases (Alcohol Group Acceptor)/genetics , Sphingosine/physiology
19.
Biochim Biophys Acta ; 1851(2): 194-202, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25457224

ABSTRACT

The matricellular protein connective tissue growth factor (CTGF/CCN2) is recognized as key player in the onset of fibrosis in various tissues, including skeletal muscle. In many circumstances, CTGF has been shown to be induced by transforming growth factor beta (TGFß) and accounting, at least in part, for its biological action. In this study it was verified that in cultured myoblasts CTGF/CCN2 causes their transdifferentiation into myofibroblasts by up-regulating the expression of fibrosis marker proteins α-smooth muscle actin and transgelin. Interestingly, it was also found that the profibrotic effect exerted by CTGF/CCN2 was mediated by the sphingosine kinase (SK)-1/S1P3 signaling axis specifically induced by the treatment with the profibrotic cue. Following CTGF/CCN2-induced up-regulation, S1P3 became the S1P receptor subtype expressed at the highest degree, at least at mRNA level, and was thus capable of readdressing the sphingosine 1-phosphate signaling towards fibrosis rather than myogenic differentiation. Another interesting finding is that CTGF/CCN2 silencing prevented the TGFß-dependent up-regulation of SK1/S1P3 signaling axis and strongly reduced the profibrotic effect exerted by TGFß, pointing at a crucial role of endogenous CTGF/CCN2 generated following TGFß challenge in the transmission of at least part of its profibrotic effect. These results provide new insights into the molecular mechanism by which CTGF/CCN2 drives its biological action and strengthen the concept that SK1/S1P3 axis plays a critical role in the onset of fibrotic cell phenotype.


Subject(s)
Cell Transdifferentiation , Connective Tissue Growth Factor/metabolism , Myoblasts, Skeletal/enzymology , Myofibroblasts/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Animals , Cell Line , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/pharmacology , Dose-Response Relationship, Drug , Fibrosis , Mice , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/pathology , Myofibroblasts/drug effects , Myofibroblasts/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA Interference , RNA, Messenger/metabolism , Receptors, Lysosphingolipid/drug effects , Receptors, Lysosphingolipid/genetics , Recombinant Proteins/pharmacology , Sphingosine-1-Phosphate Receptors , Time Factors , Transfection , Transforming Growth Factor beta1/pharmacology , Up-Regulation
20.
FEBS J ; 281(19): 4467-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25131845

ABSTRACT

Regulation of the motility of skeletal muscle precursor cells, such as satellite cells, is critically important for their proper recruitment at the site of tissue damage, and ultimately for its correct repair. Here we show that lysophosphatidic acid (LPA), which is well-recognized as a powerful bioactive agent, strongly stimulates cell migration of activated murine satellite cells. The biological effect exerted by LPA was found to be induced via activation of LPA1 and LPA3 , being abolished by cell treatment with the antagonist Ki16425, and severely impaired by siRNA-mediated down-regulation of the two receptor isoforms. In contrast, silencing of LPA2 potentiated the stimulation of cell motility by LPA, suggesting that it is negatively coupled to cell migration. Pharmacological inhibition of both sphingosine kinase (SK) isoforms using VPC96047, or the selective blocking of SK1 using VPC96091, abolished cell responsiveness to LPA; in agreement, gene silencing of SK1 or SK2 significantly reduced the biological effect of LPA. Moreover, the LPA-dependent stimulation of cell chemotaxis was found to be impaired by down-regulation of the sphingosine 1-phosphate (S1P) receptors S1P1 or S1P4 by specific siRNAs. In summary, the results obtained support the notion that the sphingosine kinase/sphingosine 1-phosphate (SK/S1P) axis is critically involved in the mechanism by which LPA elicits its pro-migratory action. This study provides compelling new information on the regulatory mechanisms of satellite cell motility, and reinforces the view that the SK/S1P signaling pathway plays a crucial role in the control of skeletal muscle precursor cell biology.


Subject(s)
Lysophospholipids/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Satellite Cells, Skeletal Muscle/physiology , Sphingosine/analogs & derivatives , Animals , Cell Movement , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Sphingosine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...