Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Aerosp Med Hum Perform ; 95(5): 278-281, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38715272

ABSTRACT

BACKGROUND: This article documents the stability of photorefractive keratectomy (PRK) and laser-assisted in situ keratomileusis (LASIK) in two astronauts during 6-mo missions to the International Space Station.CASE REPORTS: Ocular examinations including visual acuity, cycloplegic refraction, slit lamp examination, corneal topography, central corneal thickness, optical biometry (axial length/keratometry), applanation tonometry, and dilated fundus examination were performed on each astronaut before and after their missions, and in-flight visual acuity testing was done on flight day 30, 90, and R-30 (30 d before return). They were also questioned regarding visual changes during flight.DISCUSSION: We documented stable vision in both PRK and LASIK astronauts during liftoff, entry into microgravity, 6 mo on the International Space Station, descent, and landing. Our results suggest that both PRK and LASIK are stable and well tolerated during long-duration spaceflight.Gibson CR, Mader TH, Lipsky W, Schallhorn SC, Tarver WJ, Suresh R, Hauge TN, Brunstetter TJ. Photorefractive keratectomy and laser-assisted in situ keratomileusis on 6-month space missions. Aerosp Med Hum Perform. 2024; 95(5):278-281.


Subject(s)
Astronauts , Keratomileusis, Laser In Situ , Photorefractive Keratectomy , Space Flight , Visual Acuity , Humans , Photorefractive Keratectomy/methods , Keratomileusis, Laser In Situ/methods , Male , Adult , Visual Acuity/physiology , Aerospace Medicine , Middle Aged , Myopia/surgery , Myopia/physiopathology
2.
J Allergy Clin Immunol Glob ; 3(2): 100244, 2024 May.
Article in English | MEDLINE | ID: mdl-38577482

ABSTRACT

A case report detailing, for the first time, a case of laboratory-confirmed zoster in an astronaut on board the International Space Station is presented. The findings of reduced T-cell function, cytokine imbalance, and increased stress hormones which preceded the event are detailed. Relevance for deep space countermeasures is discussed.

3.
Aerosp Med Hum Perform ; 94(1): 48-50, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36757221

ABSTRACT

BACKGROUND: The purpose of this report is to document the first use of a single piece, posterior chamber phakic implantable collamer lens (ICL) with a central port in the right eye (OD) of a spaceflight participant (SFP) during a 12-d Soyuz mission to the International Space Station (ISS). We also briefly document the stability of a pre-existing pachychoroid pigment epitheliopathy (PPE) in the macula of his left eye (OS) during this mission.CASE REPORT: Ocular examination, including refraction, slit lamp examination, macular examination by optical coherence tomography (OCT), and tonometry were performed before and after his mission and he was questioned regarding visual changes during each portion of his flight.DISCUSSION: We documented no change in ICL position during his spaceflight. He reported stable vision during liftoff, entry into microgravity, 12 d on the ISS, descent, and landing. Our results suggest that the modern ICL with a central port is stable, effective, and well tolerated during short duration spaceflight. His PPE also remained stable during this mission as documented by OCT.Gibson CR, Mader TH, Lipsky W, Brown DM, Jennings R, Law J, Sargsyan A, Brunstetter T, Danilichev SN, Maezawa Y. Implantable collamer lens use in a spaceflight participant during short duration spaceflight. Aerosp Med Hum Perform. 2023; 94(1):48-50.


Subject(s)
Lenses, Intraocular , Space Flight , Weightlessness , Male , Humans , Refraction, Ocular , Eye
4.
J Neuroophthalmol ; 43(3): 364-369, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36728631

ABSTRACT

BACKGROUND: Long-duration spaceflight crewmembers are at risk for spaceflight-associated neuro-ocular syndrome (SANS). One of the earliest manifestations of SANS is optic disc edema (ODE), which could be missed using the subjective Frisén scale. The primary objective of this study is to determine the inter-rater and intrarater reliability of Frisén grade for SANS-induced ODE among a trained observer cohort. The secondary objective is to propose a standardized evaluation process for SANS-induced ODE across International Space Station Partner Agencies. METHODS: Retrospective, double-blinded diagnostic study. Preflight and postflight fundus photographs were presented to subject matter experts who identified and graded ODE. Pairs of images were also compared side-by-side for disc ranking. Grader concordance was assessed for Frisén grading and disc ranking. RESULTS: Expert graders identified Grade 1 ODE in 17.35% of images from 62 crewmembers (9 female, mean [SD] age, 47.81 [5.19] years). Grades 2 and 3 were identified less than 2% of the time. Concordance in Frisén grades among pairs of graders was 70.99%. Graders identified a difference in preflight and postflight fundus photographs 17.21% of the time when using disc ranking. Pairs of graders had complete concordance in disc ranking 79.79% of the time. Perfect intrarater agreement between Frisén grade and disc ranking occurred 77.7% of the time. CONCLUSIONS: These findings demonstrate intergrader and intragrader variability when using the Frisén scale to identify SANS-induced ODE, which is typically milder in presentation than terrestrial cases of idiopathic intracranial hypertension. It is possible to miss early ODE on fundoscopy alone, making it insufficient as a sole criterion for the diagnosis of SANS. A more sensitive and objective method of surveillance is necessary to monitor international crewmembers for ODE, perhaps using a multimodal approach that includes technology such as optical coherence tomography.


Subject(s)
Optic Disk , Papilledema , Space Flight , Humans , Female , Middle Aged , Papilledema/diagnosis , Papilledema/etiology , Optic Disk/diagnostic imaging , Retrospective Studies , Reproducibility of Results , Photography/methods
5.
Br J Ophthalmol ; 107(7): 895-900, 2023 07.
Article in English | MEDLINE | ID: mdl-36690421

ABSTRACT

Spaceflight associated neuro-ocular syndrome (SANS) refers to a distinct constellation of ocular, neurological and neuroimaging findings observed in astronauts during and following long duration spaceflight. These ocular findings, to include optic disc oedema, posterior globe flattening, chorioretinal folds and hyperopic shifts, were first described by NASA in 2011. SANS is a potential risk to astronaut health and will likely require mitigation prior to planetary travel with prolonged exposures to microgravity. While the exact pathogenesis of SANS is not completely understood, several hypotheses have been proposed to explain this neuro-ocular phenomenon. In this paper, we briefly discuss the current hypotheses and contributing factors underlying SANS pathophysiology as well as analogues used to study SANS on Earth. We also review emerging potential countermeasures for SANS including lower body negative pressure, nutritional supplementation and translaminar pressure gradient modulation. Ongoing investigation within these fields will likely be instrumental in preparing and protecting astronaut vision for future spaceflight missions including deep space exploration.


Subject(s)
Papilledema , Space Flight , Weightlessness , Humans , Papilledema/diagnosis , Papilledema/etiology , Astronauts , Weightlessness/adverse effects
6.
JAMA Ophthalmol ; 141(2): 168-175, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36602790

ABSTRACT

Importance: The primary contributing factor for development of chorioretinal folds during spaceflight is unknown. Characterizing fold types that develop and tracking their progression may provide insight into the pathophysiology of spaceflight-associated neuro-ocular syndrome and elucidate the risk of fold progression for future exploration-class missions exceeding 12 months in duration. Objective: To determine the incidence and presentation of chorioretinal folds in long-duration International Space Station crew members and objectively quantify the progression of choroidal folds during spaceflight. Design, Setting, and Participants: In this retrospective cohort study, optical coherence tomography scans of the optic nerve head and macula of crew members completing long-duration spaceflight missions were obtained on Earth prior to spaceflight and during flight. A panel of experts examined the scans for the qualitative presence of chorioretinal folds. Peripapillary total retinal thickness was calculated to identify eyes with optic disc edema, and choroidal folds were quantified based on surface roughness within macular and peripapillary regions of interest. Interventions or Exposures: Spaceflight missions ranging 6 to 12 months. Main Outcomes and Measures: Incidence of peripapillary wrinkles, retinal folds, and choroidal folds; peripapillary total retinal thickness; and Bruch membrane surface roughness. Results: A total of 36 crew members were analyzed (mean [SD] age, 46 [6] years; 7 [19%] female). Chorioretinal folds were observed in 12 of 72 eyes (17%; 6 crew members). In eyes with early signs of disc edema, 10 of 42 (24%) had choroidal folds, 4 of 42 (10%) had inner retinal folds, and 2 of 42 (5%) had peripapillary wrinkles. Choroidal folds were observed in all eyes with retinal folds and peripapillary wrinkles. Macular choroidal folds developed in 7 of 12 eyes (4 of 6 crew members) with folds and progressed with mission duration; these folds extended into the fovea in 6 eyes. Circumpapillary choroidal folds developed predominantly superior, nasal, and inferior to the optic nerve head and increased in prevalence and severity with mission duration. Conclusions and Relevance: Choroidal folds were the most common fold type to develop during spaceflight; this differs from reports in idiopathic intracranial hypertension, suggesting differences in the mechanisms underlying fold formation. Quantitative measures demonstrate the development and progression of choroidal folds during weightlessness, and these metrics may help to assess the efficacy of spaceflight-associated neuro-ocular syndrome countermeasures.


Subject(s)
Choroid Diseases , Intracranial Hypertension , Retinal Diseases , Space Flight , Humans , Female , Middle Aged , Male , Intracranial Pressure/physiology , Retrospective Studies , Incidence , Intracranial Hypertension/complications , Choroid Diseases/diagnosis , Choroid Diseases/epidemiology , Choroid Diseases/etiology , Retinal Diseases/diagnosis , Retinal Diseases/epidemiology , Retinal Diseases/etiology
8.
JAMA Ophthalmol ; 139(6): 663-667, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33914020

ABSTRACT

IMPORTANCE: While 6-month data are available regarding spaceflight-associated neuro-ocular syndrome, manned missions for 1 year and beyond are planned, warranting evaluation for spaceflight-associated neuro-ocular syndrome beyond 6 months. OBJECTIVE: To determine if the manifestation of spaceflight-associated neuro-ocular syndrome worsens during International Space Station missions exceeding the present 4- to 6-month duration. DESIGN, SETTING, AND PARTICIPANTS: The One-Year Mission Study used quantitative imaging modalities to investigate changes in ocular structure in 2 crew members who completed a 1-year-long spaceflight mission. This study investigated the ocular structure of crew members before, during, and after their mission on the International Space Station. Two crew members participated in this study from March 2015 to September 2016. Analysis began in March 2015 and ended in May 2020. EXPOSURES: Crew members were tested before, during, and up to 1 year after spaceflight. MAIN OUTCOMES AND MEASURES: This study compares ocular changes (peripapillary retinal edema, axial length, anterior chamber depth, and refraction) in two 1-year spaceflight mission crew members with cohort crew members from a 6-month mission (n = 11). Minimum rim width (the shortest distance between Bruch membrane opening and the internal limiting membrane) and peripapillary total retinal thickness were measured using optical coherence tomography. RESULTS: Both crew members were men. Minimum rim width and total retinal thickness increased in both participants throughout the duration of spaceflight exposure to the maximal observed change from preflight (minimum rim width: participant 1, 561 [+149 from preflight] µm at flight day 270; participant 2, 539 [+56 from preflight] µm at flight day 270; total retinal thickness: participant 1, 547 [+135 from preflight] µm at flight day 90; participant 2, 528 [+45 from preflight] µm at flight day 210). Changes in peripapillary choroid engorgement, axial length, and anterior chamber depth appeared similar between the 1-year mission participants and a 6-month mission cohort. CONCLUSIONS AND RELEVANCE: This report documents the late development of mild optic disc edema in 1 crew member and the progressive development of choroidal folds and optic disc edema in another crew member over the duration of 1 year in low Earth orbit aboard the International Space Station. Previous reports characterized the ocular risk associated with 4 to 6 months of spaceflight. As future spaceflight missions are planned to increase in duration and extend beyond low Earth orbit, further observation of astronaut ocular health on spaceflight missions longer than 6 months in duration may be warranted.


Subject(s)
Optic Disk , Papilledema , Space Flight , Astronauts , Choroid , Female , Humans , Male , Papilledema/diagnosis , Papilledema/etiology , Space Flight/methods
9.
Neuroophthalmology ; 45(1): 29-35, 2021.
Article in English | MEDLINE | ID: mdl-33762785

ABSTRACT

Posterior globe flattening has been well-documented in astronauts both during and after long-duration space flight (LDSF) and has been observed as early as 10 days into a mission on the International Space Station. Globe flattening (GF) is thought to be caused by the disc centred anterior forces created by elevated volume and/or pressure within the optic nerve sheath (ONS). This might be the result of increased intracranial pressure, increased intraorbital ONS pressure from compartmentalisation or a combination of these mechanisms. We report posterior GF in three astronauts that has persisted for 7 years or more following their return from LDSFs suggesting that permanent scleral remodelling may have occurred.

10.
NPJ Microgravity ; 6(1): 33, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33298950

ABSTRACT

NASA's plans for space exploration include a return to the Moon to stay-boots back on the lunar surface with an orbital outpost. This station will be a launch point for voyages to destinations further away in our solar system, including journeys to the red planet Mars. To ensure success of these missions, health and performance risks associated with the unique hazards of spaceflight must be adequately controlled. These hazards-space radiation, altered gravity fields, isolation and confinement, closed environments, and distance from Earth-are linked with over 30 human health risks as documented by NASA's Human Research Program. The programmatic goal is to develop the tools and technologies to adequately mitigate, control, or accept these risks. The risks ranked as "red" have the highest priority based on both the likelihood of occurrence and the severity of their impact on human health, performance in mission, and long-term quality of life. These include: (1) space radiation health effects of cancer, cardiovascular disease, and cognitive decrements (2) Spaceflight-Associated Neuro-ocular Syndrome (3) behavioral health and performance decrements, and (4) inadequate food and nutrition. Evaluation of the hazards and risks in terms of the space exposome-the total sum of spaceflight and lifetime exposures and how they relate to genetics and determine the whole-body outcome-will provide a comprehensive picture of risk profiles for individual astronauts. In this review, we provide a primer on these "red" risks for the research community. The aim is to inform the development of studies and projects with high potential for generating both new knowledge and technologies to assist with mitigating multisystem risks to crew health during exploratory missions.

12.
JAMA Ophthalmol ; 138(5): 553-559, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32239198

ABSTRACT

Importance: During long-duration spaceflights, nearly all astronauts exhibit some change in ocular structure within the spectrum of spaceflight-associated neuro-ocular syndrome. Objective: To quantitatively determine in a prospective study whether changes in ocular structures hypothesized to be associated with the development of spaceflight-associated neuro-ocular syndrome occur during 6-month missions on board the International Space Station (ISS). Design, Setting, and Participants: The Ocular Health ISS Study of astronauts is a longitudinal prospective cohort study that uses objective quantitative imaging modalities. The present cohort study investigated the ocular structure of 11 astronauts before, during, and after a 6-month mission on board the ISS. Main Outcomes and Measures: Changes in ocular structure (peripapillary edema, axial length, anterior chamber depth, and refraction) hypothesized to be associated with the development of spaceflight-associated neuro-ocular syndrome during 6-month missions on board the ISS were assessed. Statistical analyses were conducted from August 2018 to January 2019. Results: Before launch, the 11 astronauts were a mean (SD) age of 45 (5) years, a mean (SD) height of 1.76 (0.05) m, and a mean (SD) weight of 75.3 (7.1) kg. Six astronauts did not have prior spaceflight experience, 3 had completed short-duration missions on board the Space Shuttle, and 2 had previous long-duration spaceflight missions on board the ISS. Their mean (SD) duration on board the ISS in the present study was 170 (19) days. Optic nerve head rim tissue and peripapillary choroidal thickness increased from preflight values during early spaceflight, with maximal change typically near the end of the mission (mean change in optic nerve head rim tissue thickness on flight day 150: 35.7 µm; 95% CI, 28.5-42.9 µm; P < .001; mean choroidal thickness change on flight day 150: 43 µm; 95% CI, 35-46 µm; P < .001). The mean postflight axial length of the eye decreased by 0.08 mm (95% CI, 0.10-0.07 mm; P < .001) compared with preflight measures, and this change persisted through the last examination (1 year after spaceflight: 0.05 mm; 95% CI, 0.07-0.03 mm; P < .001). Conclusions and Relevance: This study found that spaceflight-associated peripapillary optic disc edema and choroid thickening were observed bilaterally and occurred in both sexes. In addition, this study documented substantial peripapillary choroid thickening during spaceflight, which has never been reported in a prospective study cohort population and which may be a contributing factor in spaceflight-associated neuro-ocular syndrome. Data collection on spaceflight missions longer than 6 months will help determine whether the duration of the mission is associated with exacerbating these observed changes in ocular structure or visual function.


Subject(s)
Anterior Chamber/pathology , Astronauts , Axial Length, Eye/pathology , Choroid/pathology , Papilledema/etiology , Space Flight , Weightlessness/adverse effects , Adult , Anterior Chamber/diagnostic imaging , Anterior Eye Segment/diagnostic imaging , Anterior Eye Segment/pathology , Axial Length, Eye/diagnostic imaging , Biometry , Choroid/diagnostic imaging , Choroid/physiopathology , Female , Humans , Male , Middle Aged , Papilledema/diagnostic imaging , Papilledema/physiopathology , Posterior Eye Segment/diagnostic imaging , Posterior Eye Segment/pathology , Prospective Studies , Time Factors , Tomography, Optical Coherence
13.
NPJ Microgravity ; 6: 7, 2020.
Article in English | MEDLINE | ID: mdl-32047839

ABSTRACT

Prolonged microgravity exposure during long-duration spaceflight (LDSF) produces unusual physiologic and pathologic neuro-ophthalmic findings in astronauts. These microgravity associated findings collectively define the "Spaceflight Associated Neuro-ocular Syndrome" (SANS). We compare and contrast prior published work on SANS by the National Aeronautics and Space Administration's (NASA) Space Medicine Operations Division with retrospective and prospective studies from other research groups. In this manuscript, we update and review the clinical manifestations of SANS including: unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and focal areas of ischemic retina (i.e., cotton wool spots). We also discuss the knowledge gaps for in-flight and terrestrial human research including potential countermeasures for future study. We recommend that NASA and its research partners continue to study SANS in preparation for future longer duration manned space missions.

14.
Aerosp Med Hum Perform ; 91(2): 91-97, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31980047

ABSTRACT

INTRODUCTION: Spaceflight Associated Neuro-ocular Syndrome (SANS) results from long-duration spaceflight and presents with a constellation of signs (e.g., optic disc edema, choroidal folds, globe flattening, refractive error shifts, etc.). Optic nerve tortuosity (ONT) has been detected in approximately 47% of astronauts after long-duration spaceflight but has not yet been fully analyzed. This review examines terrestrial ONT in order to better understand how the condition is caused and measured.METHODS: References were identified by PubMed and ScienceDirect searches covering 1955 to October 2018 using the terms "optic nerve tortuosity," "optic nerve kinking," "optic disc torsion," "optic kinking," and "ocular torsion." Additional references were identified by searching relevant articles.RESULTS: ONT measurements have evolved and become more objective. One measure consists of meeting two criteria: 1) lack of optic nerve congruity in >1 coronal section; and 2) subarachnoid space dilation. This "criteria measure" is objective, sensitive, and specific for determining the presence of tortuosity. Another measure is the tortuosity index, which offers additional benefits by measuring the degree of ONT, including the potential to track changes over time. There are numerous terrestrial ONT causes, including intracranial hypertension, hydrocephalus, Chiari malformation, neurofibromatosis, glaucoma, and progeria, among others.DISCUSSION: To accurately measure ONT, it is crucial to adhere to objective, standardized techniques. The tortuosity index offers the potential to measure intraindividual change in ONT. Among the varied conditions associated with ONT, one commonality is pressure change. The impact of intracranial pressure on the vascular system and vice versa may offer insight into what is occurring in space.Scott RA, Tarver WJ, Brunstetter TJ, Urquieta E. Optic nerve tortuosity on Earth and in space. Aerosp Med Hum Perform. 2020; 91(2):91-97.


Subject(s)
Astronauts , Optic Nerve/physiopathology , Papilledema/physiopathology , Space Flight , Vision Disorders/physiopathology , Aerospace Medicine , Humans
15.
J Neuroophthalmol ; 40(1): 84-91, 2020 03.
Article in English | MEDLINE | ID: mdl-31633590

ABSTRACT

BACKGROUND: Spaceflight-associated neuro-ocular syndrome (SANS) was first described in 2011 and is associated with structural ocular changes found to occur in astronauts after long-duration missions. Despite multiple insufficient potential terrestrial models, an understanding of the etiology has yet to be described. EVIDENCE ACQUISITION: A systematic review was conducted on literature published about the pathophysiology of cerebral edema. Databases searched include PubMed, Scopus, and the Texas Medical Center Online Library. This information was then applied to create theories on mechanisms on SANS etiology. RESULTS: Cerebral edema occurs through 2 general mechanisms: redistribution of ions and water intracellularly and displacement of ions and water from the vascular compartment to the brain parenchyma. These processes occur through interconnected endocrine and inflammatory pathways and involve mediators such as cytokines, matrix metalloproteases, nitric oxide, and free radicals. The pathways ultimately lead to a violation of cellular membrane ionic gradients and blood-brain barrier degradation. By applying the principles of cerebral edema pathophysiology to the optic disc edema (ODE) see in SANS, several theories regarding its etiology can be formed. Venous stasis may lead to ODE through venous and capillary distension and leak, as well as relative hypoxia and insufficient ATP substrate delivery causing axoplasmic flow stasis and local oxidative stress. CONCLUSIONS: Using the pathophysiology of cerebral edema as a model, hypotheses can be inferred as to the etiology of ODE in SANS. Further studies are needed to determine the presence and contribution of local vascular stasis and resulting inflammation and oxidative stress to the pathophysiology of SANS.


Subject(s)
Brain Edema/etiology , Papilledema/etiology , Vision Disorders/etiology , Weightlessness/adverse effects , Brain Edema/physiopathology , Humans , Papilledema/physiopathology , Space Flight , Vision Disorders/physiopathology
17.
Eye (Lond) ; 32(7): 1164-1167, 2018 07.
Article in English | MEDLINE | ID: mdl-29527011

ABSTRACT

Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (SANS). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of SANS including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study SANS in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.


Subject(s)
Eye Diseases/etiology , Optic Nerve Diseases/etiology , Space Flight , Vision Disorders/etiology , Weightlessness/adverse effects , Eye Diseases/physiopathology , Humans , Intracranial Hypertension/complications , Intracranial Pressure/physiology , Optic Nerve Diseases/physiopathology , Syndrome , Vision Disorders/physiopathology
18.
J Spec Oper Med ; 13(3): 26-28, 2013.
Article in English | MEDLINE | ID: mdl-24048984

ABSTRACT

From 5% to 22% of all U.S. Department of Defense combat casualties between 2001 and 2010 suffered some form of ocular trauma. Ocular injuries have an inordinately dramatic impact on return to duty, retention, and reintegration; only 25% of warfighters with severe ocular trauma return to duty. After a traumatic ocular event, the likelihood of saving an eye and preserving vision depends on several factors, especially the treatment quality at the point of injury. Every major organization associated with combat casualty care (e.g., the U.S. Army Institute of Surgical Research, the Committee on Tactical Combat Casualty Care, and the Department of Defense/VA Vision Center of Excellence) emphasizes the importance of placing a rigid eye shield on known/suspected eye injuries at point of injury. On the battlefield, there is no better way to protect an injured eye from further damage than with an eye shield, but shields are not readily available in individual first aid kits. Therefore, it is highly recommended that each Service rapidly integrate at least one rigid eye shield into every individual first aid kit, making them immediately available to every warfighter.


Subject(s)
First Aid , Military Personnel , Academies and Institutes , Eye Injuries , Humans , Retrospective Studies , Wounds and Injuries
19.
Mil Med ; 178(7): 806-10, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23820356

ABSTRACT

BACKGROUND: Tourniquet use recently became common in war, but knowledge gaps remain regarding analysis of recovered devices. The purpose of this study was to analyze tourniquets to identify opportunities for improved training. METHODS: We analyzed tourniquets recovered from deceased service members serving in support of recent combat operations by a team at Dover Air Force Base from 2010 to 2012. Device makes and models, breakage, deformation, band routing, and windlass turn numbers were counted. RESULTS: We recovered 824 tourniquets; 390 were used in care and 434 were carried unused. Most tourniquets were recommended by the Committee on Tactical Combat Casualty Care (Combat Application Tourniquet [CAT] or Special Operations Forces Tactical Tourniquet). The band was routed once through the buckle in 37% of used CATs, twice in 62%, and 1% had none. For tourniquets with data, the windlass turn number averaged 3.2 (range, 0-9). The CAT windlass turn number was associated positively with tourniquet deformation as moderate or severe deformation began at 2 turns, increased in likelihood stepwise with each turn, and became omnipresent at 7 or more. CONCLUSIONS: Tourniquet counts, band routings, windlass turn numbers, and deformation rates are candidate topics for instructors to refine training.


Subject(s)
Emergency Treatment/instrumentation , Inservice Training , Military Medicine , Military Personnel , Tourniquets , Equipment Design , Extremities/injuries , Hemorrhage/therapy , Humans , Iraq War, 2003-2011 , Tourniquets/statistics & numerical data , Warfare
20.
J Spec Oper Med ; 13(2): 82-87, 2013.
Article in English | MEDLINE | ID: mdl-23877773

ABSTRACT

Optimizing trauma care delivery is paramount to saving lives on the battlefield. During the past decade of conflict, trauma care performance improvement at combat support hospitals and forward surgical teams in Afghanistan and Iraq has increased through Joint Trauma System and DoD Trauma Registry data collection, analysis, and rapid evidence-based adjustments to clinical practice guidelines. Although casualties have benefitted greatly from a trauma system and registry that improves hospital care, still lacking is a comprehensive and integrated system for data collection and analysis to improve performance at the prehospital level of care. Tactical Combat Casualty Care (TCCC) based casualty cards, TCCC after action reports, and unit-based prehospital trauma registries need to be implemented globally and linked to the DoD Trauma Registry in a seamless manner that will optimize prehospital trauma care delivery.


Subject(s)
Emergency Medical Services , Military Medicine , Afghanistan , Humans , Iraq War, 2003-2011 , Registries , Trauma Centers , Wounds and Injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...