Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38675978

ABSTRACT

African swine fever (ASF) is a disease that is a growing threat to the global swine industry. Regulations and restrictions are placed on swine movement to limit the spread of the virus. However, these are costly and time-consuming. Therefore, this study aimed to determine if high-pressure processing (HPP) sanitization techniques would be effective against the ASF virus. Here, it was hypothesized that HPP could inactivate or reduce ASF virus infectivity in tissue homogenates. To test this hypothesis, 30 aliquots of each homogenate (spleen, kidney, loin) were challenge-infected with the Turin/83 strain of ASF, at a 10 7.20 median hemadsorption dose (HAD)50/mL. Subsequently, eight aliquots of each homogenate were treated with 600 millipascal (600 MPa) HPP for 3, 5, and 7 min. Six untreated aliquots were used as the controls. Virological results showed a reduction in the viral titer of more than 7-log. These results support the validity of the study hypothesis since HPP treatment was effective in inactivating ASFV in artificially prepared samples. Overall, this study suggests the need for further investigation of other ASFV-contaminated meat products.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , African Swine Fever Virus/physiology , Swine , African Swine Fever/virology , Pressure , Kidney/virology , Viral Load , Virus Inactivation , Spleen/virology
2.
Foods ; 11(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35159412

ABSTRACT

Paracentrotus lividus is a widespread sea urchin species appreciated worldwide for the taste of its fresh gonads. High-pressure processing (HPP) can provide a thermal equivalent to pasteurization, maintaining the organoleptic properties of the raw gonads. This study evaluated HPP technology's effect at 350 MPa and 500 MPa on microbial inactivation and biochemical characteristics of P. lividus gonads. HPP at 350 MPa resulted in a higher decrease in protein and free amino acids associated with a loss of olfactory, color, and gustatory traits and a visual alteration of the texture. On the other hand, gonad samples stored for 40 days after treatments at 500 MPa showed a good organoleptic profile similar to fresh gonads. Furthermore, only 500 MPa effectively reduced mesophilic bacteria contamination among the two HPP treatments carried out. Total lipids increased during storage; however, the SAFA/PUFA rate was homogeneous during HPP trials ranging from 2.61-3.91 g/100 g. Total protein decreased more than 40% after HPP at 350 MPa, whereas, after 500 MPa, it remained stable for 20 days. The amount of free amino acid constantly decreased during storage after HPP at 350 MPa and remained constant at 500 MPa. HPP can effectively remove the bacterial flora and inactivate enzymes, maintaining the properties of the fresh sea urchin gonads.

3.
Front Nutr ; 8: 695793, 2021.
Article in English | MEDLINE | ID: mdl-34350207

ABSTRACT

Legumes have been known for centuries for their good nutritional properties. Unfortunately, during processing, from 5 to 25% of this production is wasted, generating by-products that can still be a rich source of useful compounds, such as proteins, which can still be used in food and feed formulations. The choice of the extraction technique is important to preserve the nutritional value of proteins since drastic conditions of pH and/or temperature could damage them. In this work, two mild extraction techniques (direct assisted extraction-DAE and enzymatic assisted extraction-EAE) were applied for protein extraction from legume by-products obtained from agro-industrial processes. The quality of proteins was evaluated considering protein integrity [SDS-PAGE, degree of hydrolysis (DH), free amino acid content, racemization degree] and nutritional features [amino acid score (AAS), digestibility]. Direct assisted extraction is the technique that has best preserved protein integrity (1-5% DH and free amino acid content <1%), The digestibility of proteins extracted with EAE is higher (no protein bands detected in SDS-PAGE) than with the one of DAE extracts, making this technique particularly suitable for those food and feed formulation were a high digestibility of proteins is required.

4.
Int J Food Microbiol ; 258: 81-88, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28772258

ABSTRACT

This study focused on four different heat resistant aspergilli: two strains of Aspergillus hiratsukae (≡Neosartorya hiratsukae), one strain of Aspergillus neoglaber (≡Neosartorya glabra), and one strain of Aspergillus thermomutatus (≡Neosartorya pseudofischeri), all isolated from spoiled pasteurized products. Their heat-resistance, the sugar concentration limiting their germination and growth in berry-based media, and a possible relation between the contamination levels of the raw materials used and the spoilage incidence in strawberry jams were assessed. Heat resistance data obtained from thermal death curves showed that the D values of the strains tested ranged between 3.7 and 13.5min at 87°C; 1.5 and 3.5min at 90°C; and 0.3 and 0.4min at 95°C in glucose solution. Similarly, D values ranged between 3.3 and 15.4min at 87°C; 1.3 and 4.3min at 90°C; and 0.3 and 0.6min at 95°C in strawberry-based formulation. For all strains, the corresponding z-values ranged between 5.7 and 8.3°C in glucose solution and from 5.7 to 8.4°C in strawberry formulation. With regard to the limitation of fungal germination and growth in fruit-based media, sucrose concentrations required to avoid growth varied between 45.0 and 55.0% for strawberry medium and between 42.5% and 50.0% for blueberry medium. Spore inactivation was observed below aw 0.88-0.91 for strawberries and aw 0.87-0.90 for blueberries; above 49.7-56.5°Bx for strawberries and 49.6-56.0°Bx for blueberries. The threshold optical refractometric residue proved strain-dependent, but substrate-independent, as for each strain the highest Brix degree value at which germination occurred was the same on both media, despite their different sucrose concentrations. With regard to the relation between contamination of raw materials by heat-resistant mould spores and spoilage incidence on final product, an equation was modelled to estimate the occurrence of fungal spoilage in strawberry jams for low contamination levels (26-46CFU/kg). Although it could not be used as a definitive tool to predict final spoilage in such of products, it could give important practical information to jam producers in preventing spoilage of their products.


Subject(s)
Aspergillus/growth & development , Blueberry Plants/microbiology , Fragaria/microbiology , Neosartorya/growth & development , Spores, Fungal/growth & development , Food Microbiology , Fruit/microbiology , Hot Temperature , Pasteurization , Sugars/metabolism
5.
Food Environ Virol ; 7(1): 76-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25344058

ABSTRACT

Consumption of raw or insufficiently cooked mussels contaminated with hepatitis A virus (HAV) is a major cause of infection to humans. The origin of mussels commonly used for the preparation of marinated seafood salads is often unknown, since different producers worldwide undergo a precooking treatment at the original collection site with methods and parameters not always indicated. These treatments could be insufficient for the inactivation of HAV, which is characterized by a high temperature resistance. Both high hydrostatic pressure (HHP) and marinade treatments have been shown to affect HAV vitality. In this study, two treatments (HHP and marinating) were combined in order to assess a potential synergistic effect on the virus vitality. A kinetic test was conducted by subjecting the experimentally-contaminated mussels (HAV titre: 10(6)/ml TCID50) to marinating, and to different HHP treatment (4,000; 5,000; and 6,000 bar for 1, 5, and 9 min). Virus post-treatment vitality was assessed by its ability to grow on cell cultures and by quantitative real-time RT-PCR to evaluate virus resistance under such conditions. Marinating treatment alone (final pH 4.3, and NaCl 2 %) did not inactivate the virus. On the other hand, the use of HHP treatment alone on non-marinated HAV-contaminated mussels was effective only above 5,000 bar for 5 min. The results of the present study elucidate the synergistic effect of a combination between marination and HHP treatments on the inactivation of the virus.


Subject(s)
Bivalvia/virology , Food Preservation/methods , Hepatitis A virus/chemistry , Shellfish/virology , Animals , Food Contamination/analysis , Food Preservation/instrumentation , Hepatitis A virus/growth & development , Hot Temperature , Hydrostatic Pressure
6.
J Dairy Res ; 80(2): 152-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23552051

ABSTRACT

Curcumin is a bioactive polyphenolic compound extracted from turmeric with known anti-inflammatory properties, and its hydrophobic nature restricts its solubility and its bioaccessibility. Solubility may be improved upon binding of curcumin to native or treatment-modified casein micelles. The present work demonstrated that high hydrostatic pressure treatment of skim milk increases the binding of curcumin to caseins. The association of curcumin to casein micelles was assessed using fluorescence spectroscopy, either directly or by tryptophan quenching. The amount of curcumin associated with the milk proteins increased in pressure-treated milk, and a further improvement in the amount of bound curcumin was observed upon pressure treatment of a milk/curcumin mixture. However, in this case, some of the curcumin dissociated during storage, contrarily to what was observed for untreated milk. From a molecular standpoint, the data presented here indicate that structural modifications induced by high-pressure treatment and known to affect the structure of milk proteins result in a rearrangement of the amino acid residues in close proximity to the protein-associated curcumin.


Subject(s)
Curcumin/metabolism , Milk Proteins/metabolism , Milk/chemistry , Animals , Caseins/metabolism , Hydrophobic and Hydrophilic Interactions , Hydrostatic Pressure , Micelles , Milk Proteins/chemistry , Solubility , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...